\$ 12.3 Dot Product

Defs / Set-up and B Given vectors A To put 2D into 3D : $\dot{A} = \langle \pi_A, \gamma_A, z_A \rangle$ in 2D $\frac{\overline{A}}{\overline{B}} = \langle \chi_{A}, \psi_{A} \rangle$ $\overline{B} = \langle \chi_{B}, \psi_{B} \rangle$ 2 think < xA, YA, O> 2 think < x B, VB, 0> $\vec{c} = \langle x_B, y_B z_B \rangle$ Similarly for a vector C. Det For non zero \vec{A} and \vec{B} $\Theta_{AB} = \text{the (Smallest)}$ angle between \vec{A} and \vec{B} Note O & BAT3 & T Def The dot product of A and B is $\vec{A} \cdot \vec{B} = \chi_A \chi_B + \psi_A \psi_B + z_A z_B$ <u>(</u>1) Fact For nonzero A and B (See back p. 727) $\vec{A} \cdot \vec{B} = \vec{A} \cdot \vec{B} \cdot c \cdot \Theta_{AB}$ So $(OS \ominus_{AB} = \widehat{A} \cdot \widehat{B})$ and $(OAB = COS^{-1} (\widehat{A} \cdot \widehat{B}))$ $(\widehat{A} \cdot \widehat{B})$ $(\widehat{A} - \widehat{B})$ $(\widehat{A} -$ (2) In dot product of 2 vectors is a number (i.e. scalar) • Det A and B are orthogonal (1) (=> A.B = 0 (9,1) Note . if A and B are nonzero then $\vec{A} \cdot \vec{B} = 0$ (100k at C) $|\vec{A}|$ $|\vec{B}|$ co $\theta_{AB} = 0$ (2) $(a \partial_{AB} = 0$ (2) $\theta = \frac{\pi}{2} = 0$ $\vec{A} = 0$

• Recall
$$\overrightarrow{A} \cdot \overrightarrow{B} = 7_{A} \times_{B} + 4_{A} 4_{B} + 2_{A} \xrightarrow{2} B$$

So $\overrightarrow{A} \cdot \overrightarrow{A} = 1\overrightarrow{A}1^{2}$
• Algebraic Properties of det product < thick/remember , do coord-weed
For vectors $\overrightarrow{A} \cdot \overrightarrow{B} \cdot \overrightarrow{C}$ and a scalar $& (so & e \cdot R)$
1. $\overrightarrow{A} \cdot \overrightarrow{B} = \overrightarrow{B} \cdot \overrightarrow{A}$
2. $(\cancel{k}\overrightarrow{A}) \cdot \overrightarrow{B} = \cancel{k} (\overrightarrow{A} \cdot \overrightarrow{B}) = \overrightarrow{A} \cdot (\cancel{k}\overrightarrow{B})$
3. $\overrightarrow{A} \cdot (\overrightarrow{B} + \overrightarrow{C}) = (\overrightarrow{A} \cdot \overrightarrow{B}) + (\overrightarrow{A} \cdot \overrightarrow{C})$
4. $\overrightarrow{O} \cdot \overrightarrow{A} = \overrightarrow{O}$. Question: Is it correct to write $\overrightarrow{O} \cdot \overrightarrow{A} = \overrightarrow{O}$?
• Det /Appliedion. The work done by a conclude force \overrightarrow{F} acting along
a displacement of \overrightarrow{D} is $W = \overrightarrow{F} \cdot \overrightarrow{D}$
• To firm down ``same direction"
Det The (three) kire ctional angles of \overrightarrow{A} are :
 $\alpha = angle DtW \cdot \overrightarrow{A}$ and \overrightarrow{J} is the positive $\cancel{A} \cdot avis$
 $\beta = angle DtW \cdot \overrightarrow{A}$ and \overrightarrow{J} is axis
• Think of the 3 directional angles as telling us how much \overrightarrow{A} ``swings"
from the 3 (positive) coordinate axes.
• Note $\overrightarrow{O} \leq \alpha$, $\beta, \beta' \leq \overrightarrow{T}$ and $\cos^{2}\beta + \cos^{2}\beta + \cos^{2}\beta = 1$
• Also Two vectors have the same direction \swarrow{D}
 $\overrightarrow{A} = angle DtW + a and angles are the same.$

• Calculation 9
• Calculation 9

$$\vec{A} \cdot \vec{B} = 1$$
 $(\vec{A} \cdot \vec{B}) = 1$ $(\vec{A} \mid . \vec{B} \mid C_0 \ominus A_B) = 1\vec{A} \mid C_{02} \ominus A_B$
• Defs Let \vec{A} and \vec{B} be non-zero. (see body p. 793)
• The vector projection of \vec{A} onto \vec{D} as (the vector)
• The vector projection of \vec{A} onto \vec{D} as (the vector)
• The vector projection of \vec{A} onto \vec{D} as (the vector)
• The vector projection of \vec{A} onto \vec{D} as (the vector)
• The vector projection of \vec{A} onto \vec{D} as (the vector)
• The vector projection of \vec{A} onto \vec{D} as (the vector)
• The vector projection of \vec{A} onto \vec{D} as (the vector)
• The vector projection of \vec{A} onto \vec{D} as (the vector)
• The vector projection of \vec{A} onto \vec{D} as (the vector)
• $\vec{Proj}_{\vec{B}} \vec{A} = (\vec{A} \cdot \vec{B}) = \vec{B} |\vec{B}|$ $\vec{B} |\vec{B}|$
• $\vec{B} |\vec{B}|$ $\vec{B} |\vec{B} |\vec{B}|$ $\vec{B} |\vec{B}|$ $\vec{B} |\vec{B} |\vec{B}|$ $\vec{B} |\vec{B} |\vec{B}|$ $\vec{B} |\vec{B} |\vec{B} |\vec{B}|$ $\vec{B} |\vec{B} |\vec{B} |\vec{B} |\vec{B}|$ $\vec{B} |\vec{B} |\vec{B}$

Ex. If \vec{A} and \vec{B} are vectors (in \mathbb{R}^2 or \mathbb{R}^3), ^{2.3} when are (A+B) and (A-B) or thogonal? Give necessary and sufficient conditions on A and B. Solution $(\overrightarrow{A} + \overrightarrow{B})$ or the $(\overrightarrow{A} - \overrightarrow{B})$ Recal $(\overrightarrow{A}+\overrightarrow{B}) \perp (\overrightarrow{A}-\overrightarrow{B})$ À +B $\iff Cos(Xbtw) = 0$. \Leftrightarrow