\$12.3 Dot Product
Deft / Stoup

- Given vectors \vec{A} and \vec{B}

$$
\begin{array}{lll}
& \text { in } 2 D & \text { To put 2D into 3D: } \\
\vec{A}=\left\langle\pi_{A}, y_{A}, z_{A}\right\rangle & \vec{A}=\left\langle x_{A}, y_{A}\right\rangle & \begin{array}{l}
\text { think }
\end{array}\left\langle x_{A}, y_{A}, 0\right\rangle \\
\vec{B}=\left\langle x_{B}, y_{B} z_{B}\right\rangle & \vec{B}=\left\langle x_{B}, y_{B}\right\rangle & 2 \text { think }\left\langle x_{B}, y_{B}, 0\right\rangle
\end{array}
$$

Similarly for a vector \vec{c}.

- Def For nonzero \vec{A} and \vec{B}
$\theta_{A B}=$ the (smallest') angle between \vec{A} and \vec{B}
Note $0 \leq \theta_{A B} \leqslant \pi$
- Def The dotproduct of \vec{A} and \vec{B} is

$$
\begin{equation*}
\vec{A} \cdot \vec{B}=x_{A} x_{B}+y_{A} y_{B}+z_{A} z_{B} \tag{1}
\end{equation*}
$$

Fact For nonzero \vec{A} and \vec{B} <see back p. 727>

$$
\stackrel{\rightharpoonup}{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta_{A B}
$$

so

$$
\begin{aligned}
& \cos \theta_{A B}=\frac{\vec{A} \cdot \vec{B}}{|\vec{A}|\left|\frac{B}{B}\right|} \text { and } \theta_{A B}=\cos ^{-1}\left(\frac{\vec{A} \cdot \vec{B}}{|\vec{A}| \vec{B} \mid}\right) \\
& \text { recall } 0 \leq \cos ^{-1}(\text { lng angle }) \leq \pi
\end{aligned}
$$

d the dot product of 2 vectors is a number. (i.e. scalar)

- Def \vec{A} and \vec{B} are. orthogonal $(\perp) \Leftrightarrow \vec{A} \cdot \vec{B}=0$ Note
- if $\vec{A}=\overrightarrow{0}$ the $\vec{A} \cdot \vec{B} \xlongequal{\text { look at (1) }} 0$.
- if $\vec{B}=\overrightarrow{0}$ then $\vec{A} \cdot \vec{B} \stackrel{\text { look at (1) }}{=} 0$.
- if \vec{A} and \vec{B} are nonzero then
$\vec{A} \cdot \vec{B}=0 \xlongequal{\text { look at (2) }}|\vec{A}||\vec{B}|$ co $\theta_{A B}=0 \Leftrightarrow \cos \theta_{A B}=0 \Longleftrightarrow \theta_{A B}=\frac{\pi}{2} \Leftrightarrow \vec{A} \perp \vec{B}$
- Recall $\vec{A} \cdot \vec{B}=x_{A} x_{B}+y_{A} y_{B}+z_{A} z_{B}$

$$
\vec{A} \cdot \stackrel{\rightharpoonup}{A}=|\stackrel{\rightharpoonup}{A}|^{2}
$$

- Algebraic Properties of dot Product <think/remember"do coord-wise〉 For vectors $\vec{A}, \vec{B}, \vec{C}$ and a scalar $k \quad\langle$ so $k \in \mathbb{R}\rangle$

1. $\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$
2. $(k \vec{A}) \cdot B=k(\vec{A} \cdot \vec{B})=\vec{A} \cdot(k \vec{B})$
3. $\vec{A} \cdot(\vec{B}+\vec{C})=(\vec{A} \cdot \vec{B})+(\vec{A} \cdot \vec{C})$
4. $\overrightarrow{0} \cdot \vec{A}=O$. Question: Is it cared to write $O \cdot \vec{A}=0$?

- Def/Application. The work done by a constant force \vec{F} acting along a displacement of \vec{D} is $W=\vec{F} \cdot \vec{D}$
"To firm down "same direction"
Def The (three) directional angles of \vec{A} are:

$$
\begin{aligned}
& \alpha=\text { angle } b+w \cdot \vec{A} \text { and } \vec{r} \text {, ie. the positive } x \text {-axis } \\
& \beta=\text { angle } b+w \cdot \vec{A} \text { and } \vec{\jmath} \text { axis } \\
& \gamma=\text { angle } b+w \cdot \vec{A} \text { and } \vec{k} \text { axis } \\
& \gamma \text { and }
\end{aligned}
$$

- Think of the 3 directional angles as telling us how much \vec{A} "swings" from the 3 (positive) coordinate axes.
- Note $0 \leq \alpha, \beta, \gamma \leq \pi$ and $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
- Also Two vectors have the same direction \Longleftrightarrow their corresponding directional angles are the same.
- For a nice drawing, see book p 732 Exercisce 12,3.15
- Cakulation 9
$\vec{A} \cdot \frac{\vec{B}}{|\vec{B}|}=\frac{1}{|\vec{B}|}(\vec{A} \cdot \vec{B})=\frac{1}{|\vec{B}|}\left(|\vec{A}| \cdot|\vec{B}| \cos \theta_{A B}\right)=|\vec{A}| \cos \theta A B$
- Deft Let \vec{A} and \vec{B} be non zero. 〈sec book p 729〉
- The vector projection of \vec{A} onto \vec{B} is (the vector)

$$
\begin{aligned}
& \operatorname{proj}_{\vec{B}} \vec{A}=\left(\vec{A} \cdot \frac{\vec{B}}{|\vec{B}|}\right) \quad \frac{\vec{B}}{|\vec{B}|} \left\lvert\, \begin{array}{l}
\text { Recall } \\
\frac{\vec{B}}{|\vec{B}|} \text { is the unit vector } \\
\left\lvert\, \begin{array}{l}
\mid \vec{B}
\end{array}\right.
\end{array}\right. \\
& =\left(|\vec{A}| \cos \theta_{A B}\right) \frac{\vec{B}}{|\vec{B}|} \text { a lase calculation } 9
\end{aligned}
$$

a let's look at picturesbelow,

H-
even a unit vector

- The (signed) component of \vec{A} in the direction of \vec{B} is (tho\#)

$$
\operatorname{comp}_{\vec{B}} \vec{A}=\left(\vec{A} \cdot \frac{\vec{B}}{|\vec{B}|}\right) \underset{\hat{i}}{=}|\vec{A}| \cos \theta_{A B} \text { is }\left\{\begin{array}{lll}
>0, & \text { if } & 0 \leq \theta_{A B}<\pi / 2 \\
=0, & \text { if } & \theta_{A B}=\pi / 2 \\
00, & \text { if } & \frac{\pi}{2}<\theta_{A_{B}} \leq \pi .
\end{array}\right.
$$

(*) Note the length of the vector pron $\vec{B} \vec{A}=$ the abs. value of comP $\vec{B}_{\vec{B}} \vec{A}^{\prime}$

$$
\text { bes }\left|\operatorname{proj}_{\vec{B}} \vec{A}\right|=\left|\vec{A} \cdot \frac{\vec{B}}{|\vec{B}|}\right|=|\vec{A}|\left|\cos \theta_{A B}\right|=|\operatorname{comp} \vec{B} \vec{A}|
$$

- Pictures
when $0<\theta_{A B}<\pi / 2$

$$
\cos \theta_{A B}=\frac{a d j}{h y p}=\frac{\left|\operatorname{proj}_{\vec{B}} \bar{A}\right|}{|\vec{A}|}
$$

when $\pi / 2<\theta_{A B}<\pi$

$$
\underbrace{\cos \theta_{A B}}_{\text {negative }}=\underbrace{-\cos \left(\pi-\theta_{A B}\right)}_{\text {positive }}=\frac{\operatorname{adj}}{\text { hyP }}=\frac{|\operatorname{proj} \vec{B} \stackrel{A}{A}|}{|\stackrel{\rightharpoonup}{A}|}
$$

Ex. Let $\vec{A}=4 \vec{\imath}+\vec{\jmath} \stackrel{\text { ie }}{=}\langle 4,1\rangle$ and $\vec{B}=-3 \vec{\imath}+2 \vec{\jmath}$ ie $\langle-3,2\rangle$

1. $|\vec{A}|=$ \qquad
2. $|\stackrel{\rightharpoonup}{B}|=$ \qquad
3. $\vec{A} \cdot \vec{B}=$ \qquad
4. $\cos \theta_{A B}=$ \qquad
LT work:
5. $\operatorname{proj}_{\frac{1}{B}} \vec{A}=$ \qquad
6. $\operatorname{comP} \vec{B} \vec{A}=$ \qquad

Ex, If \vec{A} and \vec{B} are vectors $\left(\right.$ in \mathbb{R}^{2} or $\left.\mathbb{R}^{3}\right)$, when are $(\vec{A}+\vec{B})$ and $(\vec{A}-\vec{B})$ or thogonat?
Give necessary and suffient conditions on \vec{A} ad \vec{B}.
Solution \square

Recall $(\vec{A}+\vec{B})$ orthery. to $(\vec{A}-\vec{B})$

$$
\begin{aligned}
& (A+B) \text { 豇 } \vec{B}) \perp(\vec{A}-\vec{B})
\end{aligned}
$$

$$
\Leftrightarrow \cos (\Varangle b+w)=0 .
$$

$$
\Leftrightarrow
$$

