We cannot take the product of 2 vectors. We can take their Dot Product as well as Cross Product.

Given vectors

$$\vec{A} = \langle x_A, y_A, z_A \rangle$$
 and $\vec{B} = \langle x_B, y_B, z_B \rangle$.

Then \overrightarrow{A} dot product \overrightarrow{B} is the scalar

$$\vec{A} \cdot \vec{B} \stackrel{\text{def}}{=} x_A x_B + y_A y_B + z_A z_B \tag{DP}$$

and \vec{A} cross product \vec{B} is the vector

$$\overrightarrow{A} \times \overrightarrow{B} \stackrel{\text{def}}{=} \det \begin{bmatrix} \overrightarrow{1} & \overrightarrow{J} & \overrightarrow{k} \\ x_A & y_A & z_A \\ x_B & y_B & z_B \end{bmatrix}.$$
 (CP)

Dot Product

1. Note $\vec{A} \cdot \vec{A} = (x_A)^2 + (y_A)^2 + (z_A)^2$ so

$$\vec{A} \cdot \vec{A} = \left\| \vec{A} \right\|^2. \tag{1}$$

For nonzero vectors \overrightarrow{A} and \overrightarrow{B} , let

 $\langle \operatorname{draw} \, \overrightarrow{A} \, \operatorname{and} \, \overrightarrow{B} \, \operatorname{tail-to-tail} \rangle$

be the (smallest) angle between \overrightarrow{A} and \overrightarrow{B} . (so $0 \le \theta_{AB} \le \pi$ and $\theta_{AB} = \theta_{BA}$)

and then we get (use the law of cosine, see book)

$$\overrightarrow{A} \cdot \overrightarrow{B} \stackrel{\text{def}}{=} x_A x_B + y_A y_B + z_A z_B = \|\overrightarrow{A}\| \|\overrightarrow{B}\| \cos \theta_{AB}$$
 (2)

and so

$$\theta_{AB} = \arccos\left(\frac{\overrightarrow{A} \cdot \overrightarrow{B}}{\|\overrightarrow{A}\| \|\overrightarrow{B}\|}\right).$$
 (3)

Properties of Dot Product. Given vectors: \overrightarrow{A} , \overrightarrow{B} , \overrightarrow{C} . Given scalars: r, s.

$$(1) \vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$$

$$(2) \ \overrightarrow{0} \cdot \overrightarrow{B} = 0$$

(1)
$$\overrightarrow{A} \cdot \overrightarrow{B} = \overrightarrow{B} \cdot \overrightarrow{A}$$

(3) $(r\overrightarrow{A}) \cdot (s\overrightarrow{B}) = (rs) (\overrightarrow{A} \cdot \overrightarrow{B})$

(2)
$$\overrightarrow{d} \cdot \overrightarrow{B} = 0$$
.
(4) $\overrightarrow{A} \cdot (\overrightarrow{B} + \overrightarrow{C}) = (\overrightarrow{A} \cdot \overrightarrow{B}) + (\overrightarrow{A} \cdot \overrightarrow{C})$

Def. Vectors \overrightarrow{A} and \overrightarrow{B} are <u>orthogonal</u>, denoted $\overrightarrow{A} \perp \overrightarrow{B}$, provided $\overrightarrow{A} \cdot \overrightarrow{B} = 0$. By (2), $\overrightarrow{A} \perp \overrightarrow{B}$ precisely when at least one of the following hold: $\theta_{AB} = \frac{\pi}{2}$, $\overrightarrow{A} = \overrightarrow{0}$, $\overrightarrow{B} = \overrightarrow{0}$.

Projection (a vector) and Component (a scalar).

The projection of \vec{A} onto \vec{B} and the (signed) component of \vec{A} in the direction of \vec{B} are:

$$\overrightarrow{\operatorname{proj}}_{\vec{B}} \overrightarrow{A} \stackrel{\text{def}}{=} \left(\overrightarrow{A} \cdot \frac{\overrightarrow{B}}{\|\overrightarrow{B}\|} \right) \frac{\overrightarrow{B}}{\|\overrightarrow{B}\|} \stackrel{(*)}{=} \left(\|\overrightarrow{A}\| \cos \theta_{AB} \right) \frac{\overrightarrow{B}}{\|\overrightarrow{B}\|}$$

$$\operatorname{comp}_{\vec{B}} \overrightarrow{A} \stackrel{\text{def}}{=} \overrightarrow{A} \cdot \frac{\overrightarrow{B}}{\|\overrightarrow{B}\|} \stackrel{(*)}{=} \|\overrightarrow{A}\| \cos \theta_{AB} \qquad .$$

$$(5)$$

$$\operatorname{comp}_{\overrightarrow{B}} \overrightarrow{A} \stackrel{\text{def}}{=} \overrightarrow{A} \cdot \frac{\overrightarrow{B}}{\|\overrightarrow{B}\|} \qquad \stackrel{(*)}{=} \|\overrightarrow{A}\| \cos \theta_{AB} \qquad . \tag{5}$$

Note $\left\| \overrightarrow{\operatorname{proj}}_{\overrightarrow{B}} \overrightarrow{A} \right\| = \left| \operatorname{comp}_{\overrightarrow{B}} \overrightarrow{A} \right|$.

(*) Calculation used:
$$\overrightarrow{A} \cdot \frac{\overrightarrow{B}}{\|\overrightarrow{B}\|} = \frac{1}{\|\overrightarrow{B}\|} \left(\overrightarrow{A} \cdot \overrightarrow{B} \right) = \frac{1}{\|\overrightarrow{B}\|} \left(\|\overrightarrow{A}\| \|\overrightarrow{B}\| \cos \theta_{AB} \right) = \|\overrightarrow{A}\| \cos \theta_{AB}.$$

Prof. Girardi

Cross Product

▶. Recall definition of cross product:

$$\langle x_A, y_A, z_A \rangle \times \langle x_B, y_B, z_B \rangle \stackrel{\text{def}}{=} \det \begin{bmatrix} \overrightarrow{1} & \overrightarrow{j} & \overrightarrow{k} \\ x_A & y_A & z_A \\ x_B & y_B & z_B \end{bmatrix}$$
 (CP)

Def. Two nonzero vectors are parallel if one is a nonzero scalar multiple of the other. (beware skewed vectors)

6. Looking at the determinate in CP) we see:

The cross product of 2 parallel nonzero vectors is $\overrightarrow{0}$.

The cross product of 2 vectors, for which at least one them is the zero vector, is $\overrightarrow{0}$.

7. Put nonzero nonparallel vectors $\overrightarrow{A} = \langle x_A, y_A, z_A \rangle$ and $\overrightarrow{B} = \langle x_B, y_B, z_B \rangle$ with their tails at the origin. Then there is a unique plane \mathcal{P}_{AB} thru the points: (0,0,0) and (x_A, y_A, z_A) and (x_B, y_B, z_B) . Then \overrightarrow{n}_{AB} is the right-hand-rule unit vector perpendicular to the plane \mathcal{P}_{AB} .

Note:

(1)
$$\overrightarrow{n}_{AB} \perp \overrightarrow{A}$$

(3)
$$\|\vec{n}_{AB}\| = 1$$

(2)
$$\overrightarrow{n}_{AB} \perp \overrightarrow{B}$$

$$(4) \ \overrightarrow{n}_{AB} = -\overrightarrow{n}_{BA}$$

Also, as shown in book,

$$\vec{A} \times \vec{B} \stackrel{\text{def}}{=} \det \begin{bmatrix} \vec{1} & \vec{J} & \vec{k} \\ x_A & y_A & z_A \\ x_B & y_B & z_B \end{bmatrix} = \begin{bmatrix} \|\vec{A}\| \|\vec{B}\| \sin_{AB} \end{bmatrix} \vec{n}_{AB}. \tag{6}$$

- 8. Nonzero vectors \overrightarrow{A} and \overrightarrow{B} are parallel, denoted $\overrightarrow{A} \parallel \overrightarrow{B}$, if and only if $\overrightarrow{A} \times \overrightarrow{B} = \overrightarrow{0}$.
- 9. Properties of Cross Product. Given vectors: \overrightarrow{A} , \overrightarrow{B} , \overrightarrow{C} . Given scalars: r, s.

$$(1) \vec{A} \times \vec{B} = -(\vec{B} \times \vec{A})$$

(2)
$$\overrightarrow{0} \times \overrightarrow{B} = \overrightarrow{0}$$
.

$$(3) \left(r\overrightarrow{A} \right) \times \left(s\overrightarrow{B} \right) \ = \ (rs) \left(\overrightarrow{A} \times \overrightarrow{B} \right)$$

$$(4) \vec{A} \times (\vec{B} + \vec{C}) = (\vec{A} \times \vec{B}) + (\vec{A} \times \vec{C})$$

(5)
$$(\overrightarrow{A} + \overrightarrow{B}) \times \overrightarrow{C} = (\overrightarrow{A} \times \overrightarrow{C}) + (\overrightarrow{B} \times \overrightarrow{C})$$

(6)
$$\overrightarrow{A} \times (\overrightarrow{B} \times \overrightarrow{C}) \stackrel{(*)}{=} (\overrightarrow{A} \cdot \overrightarrow{C}) \overrightarrow{B} - (\overrightarrow{A} \cdot \overrightarrow{B}) \overrightarrow{C}$$

(cross product is \underbrace{not} associative)

$$(7) \left(\overrightarrow{A} \times \overrightarrow{B} \right) \cdot \overrightarrow{C} \stackrel{(*)}{=} \overrightarrow{A} \cdot \left(\overrightarrow{B} \times \overrightarrow{C} \right)$$

 $({\rm triple\ scalar\ product})$

 $A \stackrel{(*)}{=}$ indicated that you do not need to memorize for exam but should be able to use if given.