

Why the 2 formulas for cross fraduct are equal.
Given nonzero nonparallel vectors
$$\vec{v} = \langle v_1, v_3, v_3 \rangle$$
 and $\vec{w} = \langle w_1, v_2, w_3 \rangle$.
Cross product def.: $\vec{v} \times \vec{w} = \begin{bmatrix} \vec{v} & \vec{v} & \vec{v} \\ v_1, v_2, v_3 \end{bmatrix}$. Let $\theta = \theta_{VV} = 4bvVv$ and \vec{w} .
Now we show that
 $\vec{v} \times \vec{w} = \begin{bmatrix} \vec{v} & \vec{v} & \vec{w} \end{bmatrix} = \begin{bmatrix} \vec{v} & \vec{v} & \vec{v} \\ v_1, v_2, v_3 \end{bmatrix}$. Let $\theta = \theta_{VV} = 4bvVv$ and \vec{w} .
Now we show that
 $\vec{v} \times \vec{w} = \begin{bmatrix} \vec{v} & \vec{v} & \vec{v} \end{bmatrix} = \begin{bmatrix} \vec{v} & \vec{v} & \vec{v} \\ v_1, v_2, v_3 \end{bmatrix}$. Let $\theta = \theta_{VV} = 4bvVv$ and \vec{w} .
The sequer $\vec{v} & \vec{v} & \vec{v} = \begin{bmatrix} \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ v_1, v_2, v_3 \end{bmatrix}$. Let $\theta = \theta_{VV} = 4bvVv$ and \vec{v} .
The sequer $\vec{v} & \vec{v} & \vec{v} = \begin{bmatrix} \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ v_1, v_2, v_3 \end{bmatrix}$.
Evaluation of $\vec{v} \times \vec{w}$.
The sequer $\vec{v} & \vec{v} & \vec{v}$