1. A vector represents a quantity (eg, displacement, velocity, or force) that has both a
2. magnitude (ie, length)
3. direction.
4. A vector $\vec{v}$ sitting in $\mathbb{R}^{n}$ is drawn/respresented by a directed line segment which goes from an initial (or start/tail) point $A \in \mathbb{R}^{n}$ to a terminal (or end/head) point $B \in \mathbb{R}^{n}$. Write: $\vec{v}=\overrightarrow{A B}$
The magnitude (or length) of the vector $\vec{v}$ is the length of the line segment from $A$ to $B$.
The direction of the vector $\vec{v}$ is the direction of the directed line segment from $A$ to $B$.
The vector above with the name of the letter " v " is written: $\vec{v}$ (arrow above) or $\mathbf{v}$ (boldface) or $\overrightarrow{A B}$.
©. $\vec{v} \neq v!!!$ Do not forget your (needed) arrow above.
5. Two vectors are equal if and only if they have the same magnitude and direction.
$\triangle$. So if vectors $\vec{v}=\overrightarrow{A B}$ and $\vec{u}=\overrightarrow{C D}$ have the same length and direction, then $\vec{v}=\vec{u}$ (even if the initial points of $\vec{v}$ and $\vec{u}$ are different and their terminal points are different).

Ex1. (Working in the Cartesian plane $\mathbb{R}^{2}$.) Which vectors are equal to the vector $\vec{v}$ ? Soln: $\vec{v}=$ $\qquad$ .


Def. Given a point $V=\left(x_{V}, y_{V}, z_{V}\right)$, the vector $\left\langle x_{V}, y_{V}, z_{V}\right\rangle \stackrel{\text { def }}{=} \overrightarrow{O V}$. $\triangle$ Notice diff. btw: () and $\rangle$. The component form of a vector is: $\langle x, y, x\rangle$ for $\mathbb{R}^{3}$ and $\langle x, y\rangle$ for $\mathbb{R}^{2}$.

Def. The standard position of $\overrightarrow{A B}$ is $\overrightarrow{O V}$ where $O$ is the origin and $\overrightarrow{A B}=\overrightarrow{O V}$.
Ex2a. Given points $A=(2,-1)$ and $B=(5,1)$ and $O=(0,0)$ in $\mathbb{R}^{2}$.
Find the point $V \in \mathbb{R}^{2}$ so that $\overrightarrow{A B}=\overrightarrow{O V} . \quad$ Soln: $V=($ $\qquad$ ).


Ex2b. Given points $A=(2,-1,-1)$ and $B=(5,1,2)$ and $O=(0,0,0)$ in $\mathbb{R}^{3}$.
Find the point $V \in \mathbb{R}^{3}$ so that $\overrightarrow{A B}=\overrightarrow{O V}$. Let's go to Desmos 12.2.1. Soln: $V=($ , $\qquad$ , $\qquad$ ).
4. Take aways from Desmos 12.2 . . When in $\mathbb{R}^{2}$ just do not write the $z$ coord and geometrically think of as in $\mathbb{R}^{3}$ with $z=0$.

○. If $A=\left(x_{A}, y_{A}, z_{A}\right)$ and $B=\left(x_{B}, y_{B}, z_{B}\right)$ and the origin $O=(0,0,0)$ and $V$ are points in $\mathbb{R}^{3}$,
then the vectors $\overrightarrow{A B}=\overrightarrow{O V}$ when the point $V=\left(x_{B}-x_{A}, y_{B}-y_{A}, z_{B}-z_{A}\right)$,
in which case $\overrightarrow{O V} \stackrel{\text { def }}{=}\left\langle x_{B}-x_{A}, y_{B}-y_{A}, z_{B}-z_{A}\right\rangle$ and so $\overrightarrow{A B}=\left\langle x_{B}-x_{A}, y_{B}-y_{A}, z_{B}-z_{A}\right\rangle$.
○. For points the origin $O=(0,0,0)$ and

$$
\begin{equation*}
A=\left(x_{A}, y_{A}, z_{A}\right) \quad \text { and } \quad B=\left(x_{B}, y_{B}, z_{B}\right) \quad \text { and } \quad V=\left(x_{V}, y_{V}, z_{V}\right) \tag{1}
\end{equation*}
$$

we get that $\overrightarrow{A B}=\overrightarrow{O V} \quad$ if and only if

$$
\begin{align*}
x_{V} & =x_{B}-x_{A} \\
y_{V} & =y_{B}-y_{A}  \tag{2}\\
z_{V} & =z_{B}-z_{A},
\end{align*}
$$

in which case, since the length of a vector is the distance btw. its endpoints, the length of $\overrightarrow{A B}$, denoted $|\overrightarrow{A B}|$, is

$$
\begin{aligned}
|\overrightarrow{A B}| \stackrel{\text { def }}{=} d(A, B) & \stackrel{\S 12.1}{=} \sqrt{\left|x_{B}-x_{A}\right|^{2}+\left|y_{B}-y_{A}\right|^{2}+\left|z_{B}-z_{A}\right|^{2}} \\
& \stackrel{\text { by }(2)}{=} \sqrt{\left|x_{V}\right|^{2}+\left|y_{V}\right|^{2}+\left|z_{V}\right|^{2}} \stackrel{\text { §12.1 }}{\stackrel{(1)}{=}} d(O, V) \stackrel{\text { def }}{=}|\overrightarrow{O V}|=\left|\left\langle x_{V}, y_{V}, z_{V}\right\rangle\right|
\end{aligned}
$$

5. Note: $|\vec{v}|=0 \Leftrightarrow \vec{v}=\langle 0,0,0\rangle$. Notation: $\langle 0,0,0\rangle=\overrightarrow{0}$. Similarily in $\mathbb{R}^{2}$.
6. Def. Vector Addition, Scalar Multipication, and Vector Substraction.

Consider the vectors: $\vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ in $\mathbb{R}^{3}$.
Consider the scalar $k \in \mathbb{R}$. (Def. A scalar is a real number.)

- $\vec{u}+\vec{v} \stackrel{\text { def }}{=}\left\langle u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right\rangle$
(Vector Addition)
- $k \vec{u} \stackrel{\text { def }}{=}\left\langle k u_{1}, k u_{2}, k u_{3}\right\rangle$ (Scalar Multipication)
And for Vector Subtraction

$$
\text { - } \vec{u}-\vec{v} \stackrel{\text { def }}{=} \vec{u}+((-1) \vec{v}) \stackrel{\text { so }}{=}\left\langle u_{1}, u_{2}, u_{3}\right\rangle+\left\langle-v_{1},-v_{2},-v_{3}\right\rangle \stackrel{\text { so }}{=}\left\langle u_{1}-v_{1}, u_{2}-v_{2}, u_{3}-v_{3}\right\rangle
$$

4. Note: can NOT multiple two vectors!
o. When in $\mathbb{R}^{2}$, as above, just do not write the $z$ coordinate and geometrically think of as in $\mathbb{R}^{3}$ with $z=0$ (so in $x y$-plane).
-. Algebraically: just work component-wise.
-. Geometrically: to add two vectors, put the vectors head-to-tail.
Graphical Methods for Vector Addition


Ex. Let $\vec{u}=\langle 4,3\rangle$ and $\vec{v}=\langle 1,-2\rangle$. Find the following vectors. Express answer in component form.
.. $\frac{1}{2} \vec{u}=$ $\qquad$
.. $-\vec{v}=$ $\qquad$
o. $\vec{u}+\vec{v}=$ $\qquad$
o. $\vec{u}-\vec{v}=$ $\qquad$
o. $\quad \vec{u} \vec{v}=$ $\qquad$
Ex. Let $\vec{u}=\langle 2,2,1\rangle$ and $\vec{v}=\langle-2,-1,1\rangle$. Find the following vectors. Express answer component form.
.. $\frac{1}{2} \vec{u}=$ $\qquad$
.. $-\vec{v}=$ $\qquad$
.. $\vec{u}+\vec{v}=$ $\qquad$
.. $\vec{u}-\vec{v}=$ $\qquad$
7. Def. The vector $\vec{v}$ is a unit vector if and only if $|\vec{v}|=1$.

## 8. Def. Standard unit (basis) vectors

$\mathbb{R}^{3}$. In $\mathbb{R}^{3}$, the standard unit vectors are:

$$
\overrightarrow{\mathrm{r}} \stackrel{\text { def }}{=}\langle 1,0,0\rangle \quad \text { and } \quad \vec{\jmath} \stackrel{\text { def }}{=}\langle 0,1,0\rangle \quad \text { and } \quad \vec{k} \stackrel{\text { def }}{=}\langle 0,0,1\rangle
$$

Any vector $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ can be written as a linear combination of the standard unit vectors as follows:

$$
\begin{aligned}
\vec{v} & =\left\langle v_{1}, v_{2}, v_{3}\right\rangle \\
& =\left\langle v_{1}, 0,0\right\rangle+\left\langle 0, v_{2}, 0\right\rangle+\left\langle 0,0, v_{3}\right\rangle \\
& =v_{1}\langle 1,0,0\rangle+v_{2}\langle 0,1,0\rangle+v_{3}\langle 0,0,1\rangle \\
& =v_{1} \overrightarrow{\mathrm{\imath}}+v_{2} \overrightarrow{\mathrm{\jmath}}+v_{3} \vec{k}
\end{aligned}
$$

with $v_{1}, v_{2}, v_{3} \in \mathbb{R}$. The scalar $v_{1}$ is the $\underline{i}$-component of $\vec{v}$, scalar $v_{2}$ is the j-component of $\vec{v}$, and scalar $v_{3}$ is the k-component of $\vec{v}$,
$\mathbb{R}^{2}$. Similarily, in $\mathbb{R}^{2}$, the standard unit vectors are:

$$
\overrightarrow{\mathrm{r}} \stackrel{\text { def }}{=}\langle 1,0\rangle \quad \text { and } \quad \overrightarrow{\mathrm{J}} \quad \stackrel{\text { def }}{=}\langle 0,1\rangle .
$$

and any vector in $\mathbb{R}^{2}$ is a linear combination of the standard unit vectors: $\vec{v}=\left\langle v_{1}, v_{2}\right\rangle=v_{1} \overrightarrow{\mathrm{l}}+v_{2} \overrightarrow{\mathrm{\jmath}}$.
9. If $|\vec{v}| \neq 0$, it is often helpful to write/think-of $\vec{v}$ as:

$$
\begin{equation*}
\vec{v}=\underbrace{|\vec{v}|}_{\text {the length of } \vec{v}} \underbrace{\frac{\vec{v}}{|\vec{v}|}} \tag{3}
\end{equation*}
$$

a unit vector in the direction of $\vec{v}$
Ex. Find the direction of the vector $\overrightarrow{A B}$ where the point $A=(1,2,3)$ and the point $B=(6,5,4)$.
Express your answer as a linear combination of the standard unit vectors.
Soln: The direction of $\overrightarrow{A B}$ is

The direction of the vector $\overrightarrow{A B}$ is the unit vector in the same direction as $\overrightarrow{A B}$, which is $\frac{\overrightarrow{A B}}{|\overrightarrow{A B}|}$ by (3).
Note $\overrightarrow{A B}=\langle 6-1,5-2,4-3\rangle=\langle 5,3,1\rangle$. So $|\overrightarrow{A B}|=\sqrt{5^{2}+3^{2}+1^{3}}=\sqrt{25+9+1}=\sqrt{35}$.
So $\frac{\overrightarrow{A B}}{|\overrightarrow{A B}|}=\frac{\langle 5,3,1\rangle}{\sqrt{35}}=\frac{1}{\sqrt{35}}\langle 5,3,1\rangle=\left\langle\frac{5}{\sqrt{35}}, \frac{3}{\sqrt{35}}, \frac{1}{\sqrt{35}}\right\rangle=\frac{5}{\sqrt{35}} \overrightarrow{\mathrm{r}}+\frac{3}{\sqrt{35}} \overrightarrow{\mathrm{\jmath}}+\frac{1}{\sqrt{35}} \vec{k}$
10. Properties of Vector Operations.

Let $\vec{u}, \vec{v}$, and $\vec{w}$ be vectors. Let $a$ and $b$ be scalars (i.e., real numbers).
(1) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
(5) $0 \vec{u}=\overrightarrow{0}$
(2) $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
(6) $1 \vec{u}=\vec{u}$
(3) $\vec{u}+\overrightarrow{0}=\vec{u}$
(7) $a(b \vec{u})=(a b) \vec{u}$
(4) $\vec{u}+(-\vec{u})=\overrightarrow{0}$
(8) $a(\vec{u}+\vec{v})=a \vec{u}+a \vec{v}$
and
(9) $(a+b) \vec{u}=a \vec{u}+b \vec{u}$

