- 1. A <u>vector</u> represents a quantity (eg, displacement, velocity, or force) that has <u>both</u> a
 - $1. magnitude \qquad ({\rm ie, \ length})$
 - 2. direction.
- 2. A vector \vec{v} sitting in \mathbb{R}^n is drawn/respresented by a directed line segment which goes from an initial (or start/tail) point $A \in \mathbb{R}^n$ to a terminal (or end/head) point $B \in \mathbb{R}^n$. Write: $\vec{v} = \overrightarrow{AB}$ The magnitude (or length) of the vector \vec{v} is the length of the line segment from A to B. The direction of the vector \vec{v} is the direction of the directed line segment from A to B. The vector above with the name of the letter "v" is written: \vec{v} (arrow above) or \mathbf{v} (boldface) or \overrightarrow{AB} .
- Δ . $\vec{v} \neq v \parallel \parallel$ Do not forget your (needed) arrow above.
- 3. Two vectors are equal if and only if they have the same magnitude and direction.
- \triangle . So if vectors $\vec{v} = \overrightarrow{AB}$ and $\vec{u} = \overrightarrow{CD}$ have the same length and direction, then $\vec{v} = \vec{u}$ (even if the initial points of \vec{v} and \vec{u} are different and their terminal points are different).
- **Ex1.** (Working in the Cartesian plane \mathbb{R}^2 .) Which vectors are equal to the vector \vec{v} ? Soln: $\vec{v} =$ _____

- **Def.** Given a point $V = (x_V, y_V, z_V)$, the vector $\langle x_V, y_V, z_V \rangle \stackrel{\text{def}}{=} \overrightarrow{OV}$. ANotice diff. btw: () and $\langle \rangle$. The component form of a vector is: $\langle x, y, x \rangle$ for \mathbb{R}^3 and $\langle x, y \rangle$ for \mathbb{R}^2 .
- **Def.** The standard position of \overrightarrow{AB} is \overrightarrow{OV} where O is the origin and $\overrightarrow{AB} = \overrightarrow{OV}$.

Ex2b. Given points A = (2, -1, -1) and B = (5, 1, 2) and O = (0, 0, 0) in \mathbb{R}^3 . Find the point $V \in \mathbb{R}^3$ so that $\overrightarrow{AB} = \overrightarrow{OV}$. Let's go to Desmos 12.2.1. Soln: $V = (_, _, _, _)$ 4. Take aways from Desmos 12.2.1. When in \mathbb{R}^2 just do not write the *z* coord and geometrically think of as in \mathbb{R}^3 with z = 0.

•. If $A = (x_A, y_A, z_A)$ and $B = (x_B, y_B, z_B)$ and the origin O = (0, 0, 0) and V are points in \mathbb{R}^3 , then the vectors $\overrightarrow{AB} = \overrightarrow{OV}$ when the point $V = (x_B - x_A, y_B - y_A, z_B - z_A)$, in which case $\overrightarrow{OV} \stackrel{\text{def}}{=} \langle x_B - x_A, y_B - y_A, z_B - z_A \rangle$ and so $\overrightarrow{AB} = \langle x_B - x_A, y_B - y_A, z_B - z_A \rangle$.

•. For points the origin O = (0, 0, 0) and

$$A = (x_A, y_A, z_A) \quad \text{and} \quad B = (x_B, y_B, z_B) \quad \text{and} \quad V = (x_V, y_V, z_V) \tag{1}$$

we get that $\overrightarrow{AB} = \overrightarrow{OV}$ if and only if

$$x_V = x_B - x_A$$

$$y_V = y_B - y_A$$

$$z_V = z_B - z_A,$$
(2)

in which case, since the length of a vector is the distance btw. its endpoints, the length of \overrightarrow{AB} , denoted $|\overrightarrow{AB}|$, is

$$\left| \overrightarrow{AB} \right| \stackrel{\text{def}}{=} d(A, B) \stackrel{\$12.1}{=} \sqrt{|x_B - x_A|^2 + |y_B - y_A|^2 + |z_B - z_A|^2} \stackrel{\text{by (2)}}{=} \sqrt{|x_V|^2 + |y_V|^2 + |z_V|^2} \stackrel{(1)}{\stackrel{\$12.1}{=}} d(O, V) \stackrel{\text{def}}{=} \left| \overrightarrow{OV} \right| = |\langle x_V, y_V, z_V \rangle|.$$

5. Note: $|\vec{v}| = 0 \iff \vec{v} = \langle 0, 0, 0 \rangle$. Notation: $\langle 0, 0, 0 \rangle = \vec{0}$. Similarly in \mathbb{R}^2 .

6. Def. Vector Addition, Scalar Multiplication, and Vector Substraction. Consider the vectors: $\vec{u} = \langle u_1, u_2, u_3 \rangle$ and $\vec{v} = \langle v_1, v_2, v_3 \rangle$ in \mathbb{R}^3 . Consider the scalar $k \in \mathbb{R}$. (Def. A scalar is a real number.)

- $\vec{u} + \vec{v} \stackrel{\text{def}}{=} \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$ (Vector Addition)
- $k\vec{u} \stackrel{\text{def}}{=} \langle ku_1, ku_2, ku_3 \rangle$ (Scalar Multiplication)

And for Vector Subtraction

• $\vec{u} - \vec{v} \stackrel{\text{def}}{=} \vec{u} + ((-1)\vec{v}) \stackrel{\text{so}}{=} \langle u_1, u_2, u_3 \rangle + \langle -v_1, -v_2, -v_3 \rangle \stackrel{\text{so}}{=} \langle u_1 - v_1, u_2 - v_2, u_3 - v_3 \rangle$

- \triangle . Note: can NOT multiple two vectors!
- •. When in \mathbb{R}^2 , as above, just do not write the *z* coordinate and geometrically think of as in \mathbb{R}^3 with z = 0 (so in *xy*-plane).
- •. Algebraically: just work component-wise.
- •. Geometrically: to add two vectors, put the vectors *head-to-tail*.

Graphical Methods for Vector Addition

	Prof. Girardi §12.2: Vectors
Ex.	Let $\vec{u} = \langle 4, 3 \rangle$ and $\vec{v} = \langle 1, -2 \rangle$. Find the following vectors. Express answer in component form.
٥.	$\frac{1}{2}\vec{u} = $
٥.	$-\vec{v} =$
٥.	$\vec{u} + \vec{v} = $
٥.	$\vec{u} - \vec{v} = $
٥.	$\vec{u} \vec{v} =$ Silly Prof.! We can NOT multiply vectors !!
Ex.	Let $\vec{u} = \langle 2, 2, 1 \rangle$ and $\vec{v} = \langle -2, -1, 1 \rangle$. Find the following vectors. Express answer component form.
٥.	$\frac{1}{2}\vec{u} = _$
٥.	$-\vec{v} = $
٥.	$\vec{u} + \vec{v} = $
٥.	$\vec{u} - \vec{v} = $

7. Def. The vector \vec{v} is a <u>unit</u> vector if and only if $|\vec{v}| = 1$.

8. Def. <u>Standard unit (basis) vectors</u>

- \mathbb{R}^3 . In \mathbb{R}^3 , the <u>standard unit vectors</u> are:
 - $\vec{1} \stackrel{\text{def}}{=} \langle 1, 0, 0 \rangle$ and $\vec{j} \stackrel{\text{def}}{=} \langle 0, 1, 0 \rangle$ and $\vec{k} \stackrel{\text{def}}{=} \langle 0, 0, 1 \rangle$.

Any vector $\vec{v} = \langle v_1, v_2, v_3 \rangle$ can be written as a linear combination of the standard unit vectors as follows:

$$\vec{v} = \langle v_1, v_2, v_3 \rangle$$

= $\langle v_1, 0, 0 \rangle$ + $\langle 0, v_2, 0 \rangle$ + $\langle 0, 0, v_3 \rangle$
= $v_1 \langle 1, 0, 0 \rangle$ + $v_2 \langle 0, 1, 0 \rangle$ + $v_3 \langle 0, 0, 1 \rangle$
= $v_1 \vec{1}$ + $v_2 \vec{j}$ + $v_3 \vec{k}$

with $v_1, v_2, v_3 \in \mathbb{R}$. The scalar v_1 is the <u>i-component</u> of \vec{v} , scalar v_2 is the <u>j-component</u> of \vec{v} , and scalar v_3 is the <u>k-component</u> of \vec{v} ,

 \mathbb{R}^2 . Similarly, in \mathbb{R}^2 , the <u>standard unit vectors</u> are:

$$\vec{1} \stackrel{\text{def}}{=} \langle 1, 0 \rangle$$
 and $\vec{j} \stackrel{\text{def}}{=} \langle 0, 1 \rangle.$

and any vector in \mathbb{R}^2 is a linear combination of the standard unit vectors: $\vec{v} = \langle v_1, v_2 \rangle = v_1 \vec{1} + v_2 \vec{j}$. 9. If $|\vec{v}| \neq 0$, it is often helpful to write/think-of \vec{v} as:

$$\vec{v} = \underbrace{|\vec{v}|}_{\text{the length of } \vec{v}} \underbrace{|\vec{v}|}_{\left[\vec{v}\right]}$$
(3)

Ex. Find the direction of the vector \overrightarrow{AB} where the point A = (1, 2, 3) and the point B = (6, 5, 4). Express your answer as a linear combination of the standard unit vectors.

Soln: The direction of \overrightarrow{AB} is

The direction of the vector \overrightarrow{AB} is the unit vector in the same direction as \overrightarrow{AB} , which is $\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$ by (3). Note $\overrightarrow{AB} = \langle 6-1, 5-2, 4-3 \rangle = \langle 5,3,1 \rangle$. So $\left| \overrightarrow{AB} \right| = \sqrt{5^2 + 3^2 + 1^3} = \sqrt{25 + 9 + 1} = \sqrt{35}$. So $\frac{\overrightarrow{AB}}{\left| \overrightarrow{AB} \right|} = \frac{\langle 5,3,1 \rangle}{\sqrt{35}} = \frac{1}{\sqrt{35}} \langle 5,3,1 \rangle = \left\langle \frac{5}{\sqrt{35}}, \frac{3}{\sqrt{35}}, \frac{1}{\sqrt{35}} \right\rangle = \frac{5}{\sqrt{35}} \overrightarrow{1} + \frac{3}{\sqrt{35}} \overrightarrow{j} + \frac{1}{\sqrt{35}} \overrightarrow{k}$

10. Properties of Vector Operations.

Let \vec{u} , \vec{v} , and \vec{w} be vectors. Let *a* and *b* be scalars (i.e., real numbers).

 $(1) \ \overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$ $(5) \ 0 \ \overrightarrow{u} = \overrightarrow{0}$ $(2) \ (\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w})$ $(3) \ \overrightarrow{u} + \overrightarrow{0} = \overrightarrow{u}$ $(4) \ \overrightarrow{u} + (-\overrightarrow{u}) = \overrightarrow{0}$ and $(5) \ 0 \ \overrightarrow{u} = \overrightarrow{0}$ $(6) \ 1 \ \overrightarrow{u} = \overrightarrow{u}$ $(7) \ a \ (b \overrightarrow{u}) = (ab) \ \overrightarrow{u}$ $(8) \ a \ (\overrightarrow{u} + \overrightarrow{v}) = a \ \overrightarrow{u} + a \ \overrightarrow{v}$ $(9) \ (a + b) \ \overrightarrow{u} = a \ \overrightarrow{u} + b \ \overrightarrow{u}$