Def. Vector Addition, Vector Substraction, and Scalar Multiplication. A scalar is a real number. Consider vectors: $\overrightarrow{u} = \langle u_1, u_2, u_3 \rangle$ and $\overrightarrow{v} = \langle v_1, v_2, v_3 \rangle$ in \mathbb{R}^3 . Consider a scalar $k \in \mathbb{R}$.

• $\overrightarrow{u} + \overrightarrow{v} \stackrel{\text{def}}{=} \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$

(Vector Addition)

• $k\overrightarrow{u} \stackrel{\text{def}}{=} \langle ku_1, ku_2, ku_3 \rangle$

(Scalar Multipication)

- $\overrightarrow{u} \overrightarrow{v} \stackrel{\text{def}}{=} \overrightarrow{u} + ((-1)\overrightarrow{v}) \stackrel{\text{so}}{=} \langle u_1, u_2, u_3 \rangle + \langle -v_1, -v_2, -v_3 \rangle \stackrel{\text{so}}{=} \langle u_1 v_1, u_2 v_2, u_3 v_3 \rangle$
- A typical format of an exam problem.

Instructions for 1 and 2. Put your solution IN the box. Show your work BELOW/NEAR the box. Find the following vectors. Express answer in component form, e.g., $\langle 1, 2 \rangle$ or $\langle 1, 2, 3 \rangle$.

Let $\overrightarrow{u} = \langle 4, 3 \rangle$ and $\overrightarrow{v} = \langle 1, -2 \rangle$.

1.1.
$$\frac{1}{2}\overrightarrow{u} = \boxed{ \left\langle 2, \frac{3}{2} \right\rangle }$$

$$\frac{1}{2}\overrightarrow{u} = \frac{1}{2}\langle 4, 3 \rangle = \langle \left(\frac{1}{2}\right)(4), \left(\frac{1}{2}\right)(3) \rangle = \langle 2, \frac{3}{2} \rangle$$

1.2.
$$-\overrightarrow{v} = \langle -1, 2 \rangle$$

1.2.
$$-\overrightarrow{v} = \boxed{ \langle -1, 2 \rangle }$$
 $-\overrightarrow{v} = \langle -1 \rangle \langle 1, -2 \rangle = \langle (-1) \langle 1, (-1) \rangle \langle -1, 2 \rangle = \langle -1, 2 \rangle$

1.3.
$$\overrightarrow{u} + \overrightarrow{v} = \left| \left\langle 5, 1 \right\rangle \right|$$

1.3.
$$\overrightarrow{u} + \overrightarrow{v} =$$
 $\langle 5, 1 \rangle$ $\overrightarrow{u} + \overrightarrow{v} = \langle 4, 3 \rangle + \langle 1, -2 \rangle = \langle 4 + 1, 3 + (-2) \rangle = \langle 5, 1 \rangle$

1.4.
$$\vec{u} - \vec{v} = \langle 3, 5 \rangle$$

$$\overrightarrow{u} - \overrightarrow{v} = \overrightarrow{u} + (-1) \overrightarrow{v} \stackrel{\text{see}}{\underset{1.2}{=}} \langle 4, 3 \rangle + \langle -1, 2 \rangle = \langle 4 + (-1), 3 + 2 \rangle = \langle 3, 5 \rangle$$

_____Silly Prof.! We can NOT multiply vectors !!

2. Let $\overrightarrow{u} = \langle 2, 2, 1 \rangle$ and $\overrightarrow{v} = \langle -2, -1, 1 \rangle$.

2.1.
$$\frac{1}{2}\overrightarrow{u} = \boxed{\left\langle 1, 1, \frac{1}{2} \right\rangle}$$

2.1.
$$\frac{1}{2}\overrightarrow{u} = \left\langle 1, 1, \frac{1}{2} \right\rangle$$
 $\frac{1}{2} \langle 2, 2, 1 \rangle = \left\langle \left(\frac{1}{2}\right)(2), \left(\frac{1}{2}\right)(2), \left(\frac{1}{2}\right)(1) \right\rangle = \left\langle 1, 1, \frac{1}{2} \right\rangle$

$$\mathbf{2.2.} \quad -\overrightarrow{v} = \boxed{ \langle 2, 1, -1 \rangle }$$

$$-\overrightarrow{v} = (-1) \langle -2, -1, 1 \rangle = \langle (-1) (-2), (-1) (-1), (-1) (1) \rangle = \langle 2, 1, -1 \rangle$$

2.3.
$$\overrightarrow{u} + \overrightarrow{v} = \langle 0, 1, 2 \rangle$$

$$\vec{u} + \vec{v} = \langle 2, 2, 1 \rangle + \langle -2, -1, 1 \rangle = \langle 2 + (-2), 2 + (-1), 1 + 1 \rangle = \langle 0, 1, 2 \rangle$$

2.4.
$$\overrightarrow{u} - \overrightarrow{v} = \langle 4, 3, 0 \rangle$$

$$\overrightarrow{u} - \overrightarrow{v} = \overrightarrow{u} + (-1) \overrightarrow{v} \stackrel{\text{see}}{\underset{2.7}{\text{ev}}} \langle 2, 2, 1 \rangle + \langle 2, 1, -1 \rangle = \langle 2 + 2, 2 + 1, 1 + (-1) \rangle = \langle 4, 3, 0 \rangle$$

Def. The vector \overrightarrow{v} is a <u>unit</u> vector if and only if $\|\overrightarrow{v}\| = 1$.

Def. Standard unit (basis) vectors

In \mathbb{R}^3 , the standard unit vectors are:

$$\overrightarrow{1} \stackrel{\text{def}}{=} \langle 1, 0, 0 \rangle$$

and

$$\overrightarrow{\mathtt{j}} \ \stackrel{\mathrm{def}}{=} \langle 0, 1, 0 \rangle$$

and

$$\overrightarrow{k} \stackrel{\text{def}}{=} \langle 0, 0, 1 \rangle.$$

Any vector $\overrightarrow{v} = \langle v_1, v_2, v_3 \rangle$ can be written as a linear combination of the standard unit vectors as follows:

$$\overrightarrow{v} = \langle v_1, v_2, v_3 \rangle
= \langle v_1, 0, 0 \rangle + \langle 0, v_2, 0 \rangle + \langle 0, 0, v_3 \rangle
= v_1 \langle 1, 0, 0 \rangle + v_2 \langle 0, 1, 0 \rangle + v_3 \langle 0, 0, 1 \rangle
= v_1 \overrightarrow{1} + v_2 \overrightarrow{1} + v_3 \overrightarrow{k}.$$

The scalar v_1 is the <u>i-component</u> and v_2 is the <u>j-component</u> and v_3 is the <u>k-component</u> of the vector \vec{v} . Note $v_1, v_2, v_3 \in \mathbb{R}$ while $\overrightarrow{1}, \overrightarrow{j}, \overrightarrow{k}$ are vectors.

Similarly, in \mathbb{R}^2 , the standard unit vectors are: \mathbb{R}^2 .

$$\overrightarrow{1} \stackrel{\text{def}}{=} \langle 1, 0 \rangle$$

and
$$\overrightarrow{J} \stackrel{\text{def}}{=} \langle 0, 1 \rangle$$
.

and any vector in \mathbb{R}^2 is a linear combination of the standard unit vectors: $\overrightarrow{v} = \langle v_1, v_2 \rangle = v_1 \overrightarrow{1} + v_2 \overrightarrow{1}$.

Rmk. If $\|\vec{v}\| \neq 0$, it is often helpful to write/think-of \vec{v} as:

$$\overrightarrow{v} = \underbrace{\|\overrightarrow{v}\|}_{\text{the length of } \overrightarrow{v}} \underbrace{\|\overrightarrow{v}\|}_{\text{wit vector in the direction of } \overrightarrow{v} \text{ and is called the } \underline{\text{direction of } \overrightarrow{v}}$$
(1)

Find the direction of the vector \overrightarrow{AB} where the point A = (1, 2, 3) and the point B = (6, 5, 4). Express your answer as a linear combination of the standard unit vectors.

Soln: The direction of \overrightarrow{AB} is

$$\frac{5}{\sqrt{35}} \overrightarrow{1} + \frac{3}{\sqrt{35}} \overrightarrow{J} + \frac{1}{\sqrt{35}} \overrightarrow{k}$$

The <u>direction</u> of the vector \overrightarrow{AB} is the <u>unit</u> vector in the same direction as \overrightarrow{AB} , which is $\frac{\overrightarrow{AB}}{\|\overrightarrow{AB}\|}$ by (1).

Note
$$\overrightarrow{AB} = \langle 6-1, 5-2, 4-3 \rangle = \langle 5, 3, 1 \rangle$$
. So $\left\| \overrightarrow{AB} \right\| = \sqrt{5^2 + 3^2 + 1^3} = \sqrt{25 + 9 + 1} = \sqrt{35}$. So $\left\| \overrightarrow{AB} \right\| = \left\langle \frac{5}{\sqrt{35}}, \frac{3}{\sqrt{35}}, \frac{1}{\sqrt{35}} \right\rangle = \frac{5}{\sqrt{35}} \overrightarrow{1} + \frac{3}{\sqrt{35}} \overrightarrow{j} + \frac{1}{\sqrt{35}} \overrightarrow{k}$

Rmk. Properties of Vector (algebraic) Operations.

Let \overrightarrow{u} , \overrightarrow{v} , and \overrightarrow{w} be vectors. Let a and b be scalars (i.e., real numbers).

(1)
$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$$

$$(5) \ 0 \ \overrightarrow{u} = \overrightarrow{0}$$

$$(2) \ (\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w})$$

(6)
$$1 \overrightarrow{u} = \overrightarrow{u}$$

$$(3) \ \overrightarrow{u} + \overrightarrow{0} = \overrightarrow{u}$$

$$(7) \ a (b \overrightarrow{u}) = (ab) \overrightarrow{u}$$

$$(4) \ \overrightarrow{u} + (-\overrightarrow{u}) = \overrightarrow{0}$$

$$(8) \ a(\overrightarrow{u} + \overrightarrow{v}) = a\overrightarrow{u} + a\overrightarrow{v}$$

and

(9)
$$(a+b) \overrightarrow{u} = a \overrightarrow{u} + b \overrightarrow{u}$$