NAME: \qquad PIN: \qquad

1. Fill in the two blanks. By using the Limit Comparison Test, one can show that the formal series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\sqrt{n^{3}+100 n^{2}+5 n-3}}{1002 n^{4}+n-1} \tag{1}
\end{equation*}
$$

is \qquad by comparing the series in (1) to the p-series $\sum\left(\frac{1}{n}\right)^{p}$ with \qquad .
a. convergent, $p=\frac{5}{2}$
b. divergent, $p=\frac{5}{2}$
c. convergent, $p=1$
d. divergent, $p=1$
e. none of the others

First let's recall the Limit Comparison Test for a positive-termed series $\sum a_{n}$.
Let $b_{n}>0$ and $L=\lim _{n \rightarrow \infty} \quad \frac{a_{n}}{b_{n}}$.

$0<L<\infty$	then , then , then	[$\sum b_{n}$ converges	$\stackrel{ }{ }$	\sum	converg
$L=0$		[$\sum b_{n}$ converge		$\sum a^{\prime}$	converge
$L=\infty$		$\left[\sum b_{n}\right.$ diverge	=	$\sum a^{\prime}$	diverges

To apply the Limit Comparison Test to the problem given, let

$$
a_{n}=\frac{\sqrt{n^{3}+100 n^{2}+5 n-3}}{1002 n^{4}+n-1}
$$

and we are told to let $b_{n}=\frac{1}{n^{p}}$ for some p (we need to decide what p). Since

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}} \text { is } \quad \begin{cases}\text { convergent } & \text { if } p=\frac{5}{2}(\text { since } p>1) \\ \text { divergent } & \text { if } p=1(\text { since } p \leq 1)\end{cases}
$$

we know choice \mathbf{b} and \mathbf{c} cannot be correct. For n sufficiently big,

$$
a_{n}=\frac{\sqrt{n^{3}+100 n^{2}+5 n-3}}{1002 n^{4}+n-1} \approx \frac{\sqrt{n^{3}}}{1002 n^{4}}=\frac{1}{1002} \frac{n^{3 / 2}}{n^{8 / 2}}=\frac{1}{1002} \frac{1}{n^{5 / 2}} .
$$

So we let $b_{n}=\left(\frac{1}{n}\right)^{\frac{5}{2}}$ and compute
$\frac{a_{n}}{b_{n}}=\frac{\left(n^{3}+100 n^{2}+5 n-3\right)^{1 / 2}}{1002 n^{4}+n-1} \frac{\left(n^{5}\right)^{1 / 2}}{1}=\left[\frac{n^{8}+100 n^{7}+5 n^{6}-3 n^{5}}{\left(1002 n^{4}+n-1\right)^{2}}\right]^{1 / 2} \xrightarrow{n \rightarrow \infty}\left[\frac{1}{(1002)^{2}}\right]^{1 / 2}=\frac{1}{1002}$.
Note that we used that $\left(1002 n^{4}+n-1\right)^{2}$ is a polynomial of degree 8 and the coefficient of n^{8} is $(1002)^{2}$. Since $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{1}{1002}$ and $0<\frac{1}{1002}<\infty$, the LCT says that the $\sum a_{n}$ and $\sum b_{n}$ do the some thing. Since we know that $\sum b_{n}$ converges (it is a p-series with $p=5 / 2>1$), the LCT says that $\sum a_{n}$ also converges.

So the solution is \mathbf{a}.

