NAME:

PIN:

1. Fill in the two blanks. By using the Limit Comparison Test, one can show that the formal series

$$\sum_{n=1}^{\infty} \frac{\sqrt{n^3 + 100n^2 + 5n - 3}}{1002n^4 + n - 1} \,. \tag{1}$$

- is ______ by comparing the series in (1) to the *p*-series $\sum \left(\frac{1}{n}\right)^p$ with ______. a. convergent, $p = \frac{5}{2}$
- b. divergent, $p = \frac{5}{2}$
- c. convergent, p = 1
- d. divergent, p = 1
- e. none of the others

First let's recall the **Limit Comparison Test** for a positive-termed series $\sum a_n$. Let $b_n > 0$ and $L = \lim_{n \to \infty}$ $\frac{a_n}{b}$

- <i>n</i>		o_n		
• If	$0 < L < \infty$, then	$\left[\sum b_n \text{ converges } \iff \sum a_n \text{ converges } \right]$.
• If	L = 0	, then	$\left[\sum b_n \text{ converges } \implies \sum a_n \text{ converges } \right]$.
• If	$L = \infty$, then	$\left[\sum b_n \text{ diverges } \implies \sum a_n \text{ diverges } \right]$.

To apply the Limit Comparison Test to the problem given, let

$$a_n = \frac{\sqrt{n^3 + 100n^2 + 5n - 3}}{1002n^4 + n - 1}$$

and we are told to let $b_n = \frac{1}{n^p}$ for some p (we need to decide what p). Since

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \quad \text{is} \qquad \begin{cases} \text{convergent} & \text{if } p = \frac{5}{2} \text{ (since } p > 1) \\ \text{divergent} & \text{if } p = 1 \text{ (since } p \le 1) \end{cases}$$

we know choice **b** and **c** cannot be correct. For *n* sufficiently big,

$$a_n = \frac{\sqrt{n^3 + 100n^2 + 5n - 3}}{1002n^4 + n - 1} \approx \frac{\sqrt{n^3}}{1002n^4} = \frac{1}{1002} \frac{n^{3/2}}{n^{8/2}} = \frac{1}{1002} \frac{1}{n^{5/2}}.$$

So we let $b_n = \left(\frac{1}{n}\right)^{\frac{5}{2}}$ and compute $\frac{a_n}{b_n} = \frac{\left(n^3 + 100n^2 + 5n - 3\right)^{1/2}}{1002n^4 + n - 1} \frac{\left(n^5\right)^{1/2}}{1} = \left[\frac{n^8 + 100n^7 + 5n^6 - 3n^5}{\left(1002n^4 + n - 1\right)^2}\right]^{1/2} \xrightarrow{n \to \infty} \left[\frac{1}{\left(1002\right)^2}\right]^{1/2} = \frac{1}{1002}.$

Note that we used that $(1002n^4 + n - 1)^2$ is a polynomial of degree 8 and the coefficient of n^8 is $(1002)^2$. Since $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{1}{1002}$ and $0 < \frac{1}{1002} < \infty$, the LCT says that the $\sum a_n$ and $\sum b_n$ do the some thing. Since we know that $\sum b_n$ converges (it is a *p*-series with p = 5/2 > 1), the LCT says that $\sum a_n$ also converges.

So the solution is **a**.