For this quiz, we have:

$$y = e^x$$
 and the center $x_0 = 0$.

- (a). (2 pts) Find a general form for the n^{th} Taylor Coefficient. Your answer can have an n in it, but not any x's or f's.
 - $c_n = \frac{1}{n!}$

Solution: The n^{th} Taylor Coefficient of y = f(x) at the center x_0 is $c_n := \frac{f^{(n)}(x_0)}{n!}$. Here, $f(x) = e^x$. We do not even have to make a chart to see the pattern for the n^{th} -derivative of f since it is clear that $f^{(n)}(x) = e^x$ for each $x \in \mathbb{R}$ and $n \in \mathbb{N}$. As the center $x_0 = 0$, we have $f^{(n)}(x_0) = e^0 = 1$ for every integer $n \ge 0$. So $c_n = \frac{f^{(n)}(x_0)}{n!} = \frac{1}{n!}$.

(b). (4 pts) Find the Taylor Series of $y = e^x$ about the center $x_0 = 0$.

$$P_{\infty}(x) = \sum_{n=0}^{\infty} \frac{1}{n!} x^n \qquad \text{Also fine: } P_{\infty}(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Solution: Recall that the general formula for a Taylor Series $y = P_{\infty}(x)$ of f about the center x_0 is:

$$P_{\infty}(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

In part (a), we computed $\frac{f^{(n)}(x_0)}{n!} = \frac{1}{n!}$ in part (a). As $x_0 = 0$, $(x - x_0)^n = (x - 0)^n = x^n$.

The correct answer for $P_{\infty}(x)$ is in the box above.

(c). (4 pts) Using Taylor's Remainder Theorem (i.e., the Big Theorem from the class handout), show that the power series you found in part (b) converges for $x \in (-2, 2)$.

Solution: Our goal is to carefully show that $e^x = P_{\infty}(x)$ for each $x \in (-2, 2)$. Recall that

$$e^{x} = P_{N}\left(x\right) + R_{N}\left(x\right) \tag{1}$$

where P_N is the Nth-order Taylor Polyonimal and R_N is the Nth-order Taylor Remainder. The remainder/error term R_N is defined so that (1) holds, i.e., R_N is defined as $R_N(x) := e^x - P_N(x)$. So to show that

for each
$$x \in (-2, 2)$$
, $e^x = P_\infty(x)$,

we need to show that

for each
$$x \in (-2, 2)$$
, $\lim_{N \to \infty} |R_N(x)| = 0$. (2)

• Step 1: Find a good upper bound for $|R_n(x)|$ for $x \in (-2, 2)$. Consider an $x \in (-2, 2)$. By Taylor's Remainder Theorem

$$R_N(x) = \frac{f^{(N+1)}(c)}{(N+1)!} x^{N+1}$$

for some c between x and the center 0. Since $x \in (-2, 2)$ and c is between x and 0, we know that $c \in (-2, 2)$. Thus

$$|R_{N}(x)| = \left| \frac{f^{(N+1)}(c)}{(N+1)!} x^{N+1} \right| \stackrel{\text{(A)}}{=} \frac{|f^{(N+1)}(c)|}{(N+1)!} |x|^{N+1} = \frac{e^{c}}{(N+1)!} |x|^{N+1} \leq \frac{e^{2}}{(N+1)!} 2^{N+1} \cdot \frac{e^{2}}{(N+1)!} 2^{N+1$$

So a good upper bound for $|R_N(x)|$, for $x \in (-2, 2)$, is

$$|R_N(x)| \le e^2 \frac{2^{N+1}}{(N+1)!} .$$
(3)

• Step 2: Show that the (good) upper bound we found in (3) tends to zero as $N \to \infty$. So we want to show that $\lim_{N\to\infty} \frac{e^2 2^{N+1}}{(N+1)!} = 0$. (Sometimes this step is easy but in this example we will have to use a little trick (tool) that <u>sometimes</u> works ... here we go). Let $a_N = \frac{e^2 2^{N+1}}{(N+1)!}$. (To show that $\lim_N a_N = 0$, we will actually show something stronger, namely $\sum a_N$ converges.) The Ratio Test tells us that the <u>series</u>

$$\sum_{n=0}^{\infty} \frac{e^2}{(n+1)!} \, 2^{n+1}$$

is (absolutely) convergent since applying the Ratio Test we get

$$\rho = \lim_{N \to \infty} \left| \frac{a_{N+1}}{a_N} \right| = \lim_{N \to \infty} \frac{e^2 \, 2^{N+2}}{(N+2)!} \cdot \frac{(N+1)!}{e^2 \, 2^{N+1}} = \lim_{N \to \infty} \frac{2}{N+2} = 0.$$

The n^{th} term test for divergence gives that if the series $\sum_{n} a_n$ converges, then the limit of the sequence $\{a_n\}_n$ is 0, i.e. $\lim_{n\to\infty} a_n = 0$. So $\lim_{N\to\infty} \frac{e^2 2^{N+1}}{(N+1)!} = 0$. **Step 3:** Show that $\lim_{n\to\infty} |B_N(x)| = 0$.

• Step 3: Show that $\lim_{N \to \infty} |R_N(x)| = 0.$

$$0 \le |R_N(x)| \stackrel{\text{by (3)}}{\le} \frac{2^{N+1}}{(N+1)!} e^2 \xrightarrow{\text{as } n \to \infty, \text{ by Step 2}} 0.$$

The Squeeze/Sandwich Theorem gives that $\lim_{N\to\infty} |R_N(x)| = 0$.