
NAME/PIN: SOLUTION §Quiz Taylor Series

For this quiz, we have:

y = ex and the center x0 = 0.

(a). (2 pts) Find a general form for the nth Taylor Coefficient. Your answer can have an n in it,
but not any x’s or f ’s.

cn =
1

n!

Solution: The nth Taylor Coefficient of y = f (x) at the center x0 is cn:=
f (n)(x0)

n!
. Here, f (x) = ex.

We do not even have to make a chart to see the pattern for the nth-derivative of f since it is clear
that f (n)(x) = ex for each x ∈ R and n ∈ N. As the center x0 = 0, we have f (n)(x0) = e0 = 1 for

every integer n ≥ 0. So cn =
f (n)(x0)

n!
=

1

n!
.

(b). (4 pts) Find the Taylor Series of y = ex about the center x0 = 0.

P∞(x) =
∞∑
n=0

1

n!
xn Also fine: P∞(x) =

∞∑
n=0

xn

n!

Solution: Recall that the general formula for a Taylor Series y = P∞ (x) of f about the cen-
ter x0 is:

P∞ (x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n

In part (a), we computed
f (n)(x0)

n!
=

1

n!
in part (a). As x0 = 0, (x− x0)n = (x− 0)n = xn.

The correct answer for P∞(x) is in the box above.

(c). (4 pts) Using Taylor’s Remainder Theorem (i.e., the Big Theorem from the class handout), show
that the power series you found in part (b) converges for x ∈ (−2, 2).

Solution: Our goal is to carefully show that ex = P∞(x) for each x ∈ (−2, 2). Recall that

ex = PN (x) +RN (x) (1)

where PN is the N th-order Taylor Polyonimal and RN is the N th-order Taylor Remainder. The
remainder/error term RN is defined so that (1) holds, i.e., RN is defined as RN (x) := ex − PN (x).
So to show that

for each x ∈ (−2, 2) , ex = P∞ (x) ,

we need to show that

for each x ∈ (−2, 2) , lim
N→∞

|RN(x)| = 0 . (2)
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• Step 1: Find a good upper bound for |Rn (x)| for x ∈ (−2, 2).
Consider an x ∈ (−2, 2). By Taylor’s Remainder Theorem

RN(x) =
f (N+1)(c)

(N + 1)!
xN+1

for
:::::
some c between x and the center 0. Since x ∈ (−2, 2) and c is between x and 0, we know

that c ∈ (−2, 2). Thus

|RN(x)| =x
Taylor

Remainder
Formula

∣∣∣∣f (N+1)(c)

(N + 1)!
xN+1

∣∣∣∣ A©
=

∣∣f (N+1)(c)
∣∣

(N + 1)!
|x|N+1 =x

by part (a)

ec

(N + 1)!
|x|N+1 ≤x

since
x ∈ (−2, 2)
c ∈ (−2, 2)

e2

(N + 1)!
2N+1 .

So a good upper bound for |RN(x)|, for x ∈ (−2, 2), is

|RN(x)| ≤ e2
2N+1

(N + 1)!
. (3)

• Step 2: Show that the (good) upper bound we found in (3) tends to zero as N →∞.

So we want to show that limN→∞
e2 2N+1

(N+1)!
= 0. (Sometimes this step is easy but in this

example we will have to use a little trick (tool) that
::::::::::
sometimes works . . . here we go). Let

aN = e2 2N+1

(N+1)!
. (To show that limN aN = 0, we will actually show something stronger, namely∑

aN converges.) The Ratio Test tells us that the
::::::
series

∞∑
n=0

e2

(n+ 1)!
2n+1

is (absolutely) convergent since applying the Ratio Test we get

ρ = lim
N→∞

∣∣∣∣aN+1

aN

∣∣∣∣ = lim
N→∞

e2 2N+2

(N + 2)!
· (N + 1)!

e2 2N+1
= lim

N→∞

2

N + 2
= 0.

The nth term test for divergence gives that if the
:::::
series

∑
n an converges, then the limit of

the
:::::::::
sequence {an}n is 0, i.e. limn→∞ an = 0. So limN→∞

e2 2N+1

(N+1)!
= 0.

• Step 3: Show that lim
N→∞

|RN(x)| = 0.

0 ≤ |RN(x)|
by (3)

≤ 2N+1

(N + 1)!
e2

as n→∞, by Step 2−−−−−−−−−−−→ 0.

The Squeeze/Sandwich Theorem gives that limN→∞ |RN(x)| = 0.
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