(b).

NAME/PIN: SOLUTION §Quiz Taylor Series

For this quiz, we have:

y = €” and the center xq = 0.

. (2 pts) Find a general form for the n® Taylor Coefficient. Your answer can have an n in it,

but not any z’s or f’s.

1
Cn:_'
n.

(n)
Solution: The n'® Taylor Coefficient of y = f (z) at the center g is cn::f (‘xo)' Here, f (z) = e”.
n

We do not even have to make a chart to see the pattern for the nh_derivative of f since it is clear
that f((z) = e® for each x € R and n € N. As the center zy = 0, we have f((zq) = ¢ = 1 for

™) (x 1
every integer n > 0. So ¢, = (o) = —.
n! n!

(4 pts) Find the Taylor Series of y = e about the center xy = 0.

=1 X .n
Pu(z) =) —a" Also fine: Py () = 3 %
n=0 i

Solution: Recall that the general formula for a Taylor Series y = Py (x) of f about the cen-
ter g is:

) (g
Po(z) =3 L0 (g

n!
n=0

(n)
fMla) L in part (a). As o =0, (x —x0)" = (z — 0)" = 2"

In part (a), we computed =
n! n!

The correct answer for P, (x) is in the box above.

. (4 pts) Using Taylor’s Remainder Theorem (i.e., the Big Theorem from the class handout), show

that the power series you found in part (b) converges for z € (-2, 2).

Solution: Our goal is to carefully show that e = P, (z) for each € (—2,2). Recall that
e’ = Py (z) + Ry () (1)

where Py is the N'"-order Taylor Polyonimal and Ry is the N* -order Taylor Remainder. The
remainder/error term Ry is defined so that (1) holds, i.e., Ry is defined as Ry (x) := e* — Py (x).
So to show that

for each x € (=2,2), €= Py (x) ,
we need to show that
for each z € (—2,2), lim |Ry(z)]=0. (2)

N—oo
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e Step 1: Find a good upper bound for |R, (z)| for x € (-2, 2).
Consider an = € (—2,2). By Taylor’s Remainder Theorem

f(NH)(C) N+1
N+

for some ¢ between z and the center 0. Since z € (—2,2) and ¢ is between z and 0, we know
that ¢ € (—2,2). Thus

RN<I> =

|R f(N—H) N1 @ ‘f(N+1)(C)‘ |x|N+1 _ ¢ | |N+1 _ 2 oV
N (N+1)! (N +1)! [ (N + 1)! T (N + 1)!
Tay.lor by part (a) since
Remainder z € (-2,2)
Formula ce (-2,2)
So a good upper bound for |Ry(z)|, for z € (—2,2), is
Ry(@)] < @ 2 )
x - — .
M= (v +1)!

e Step 2: Show that the (good) upper bound we found in (3) tends to zero as N — oc.

So we want to show that limy_, %
example we will have to use a little trick (tool) that sometimes works ... here we go). Let
ay = % (To show that limy ay = 0, we will actually show something stronger, namely

= 0. (Sometimes this step is easy but in this

> an converges.) The Ratio Test tells us that the series

Z ¢? on+1
[
—~ (n+1)!

s (absolutely) convergent since applying the Ratio Test we get
e22N2 (N +1)! ) 2

1 . — _c

T Noao (N +2)1 22N T N N 4 2
The n'™™ term test for divergence gives that if the series ., a, converges, then the limit of
62 2N+1

= 0.

the sequence {a,}, is 0, i.e. lim, o a, = 0. So limy_,o ESYE
e Step 3: Show that ]\}im |Rn(x)| = 0.
—00

aN+1

p= lim

N—oo

an

by (3) 2N+1

<
= N+1)°
The Squeeze/Sandwich Theorem gives that limy_,.. |Ry(z)| = 0.

9 as n—oo, by Step 2

0 < |Ru(z)| , 0,

November 9, 2016 Page 2 of 2 Math 142



