For this quiz, we have:

$$
y=e^{x} \text { and the center } x_{0}=0
$$

(a). (2 pts) Find a general form for the $n^{\text {th }}$ Taylor Coefficient. Your answer can have an n in it, but not any x 's or f 's.
$c_{n}=\frac{1}{n!}$
Solution: The $n^{\text {th }}$ Taylor Coefficient of $y=f(x)$ at the center x_{0} is $c_{n}:=\frac{f^{(n)}\left(x_{0}\right)}{n!}$. Here, $f(x)=e^{x}$.
We do not even have to make a chart to see the pattern for the $n^{\text {th }}$-derivative of f since it is clear that $f^{(n)}(x)=e^{x}$ for each $x \in \mathbb{R}$ and $n \in \mathbb{N}$. As the center $x_{0}=0$, we have $f^{(n)}\left(x_{0}\right)=e^{0}=1$ for every integer $n \geq 0$. So $c_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}=\frac{1}{n!}$.
(b). (4 pts) Find the Taylor Series of $y=e^{x}$ about the center $x_{0}=0$.

$$
P_{\infty}(x)=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n} \quad \text { Also fine: } P_{\infty}(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

Solution: Recall that the general formula for a Taylor Series $y=P_{\infty}(x)$ of f about the center x_{0} is:

$$
P_{\infty}(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

In part (a), we computed $\frac{f^{(n)}\left(x_{0}\right)}{n!}=\frac{1}{n!}$ in part (a). As $x_{0}=0,\left(x-x_{0}\right)^{n}=(x-0)^{n}=x^{n}$.
The correct answer for $P_{\infty}(x)$ is in the box above.
(c). (4 pts) Using Taylor's Remainder Theorem (i.e., the Big Theorem from the class handout), show that the power series you found in part (b) converges for $x \in(-2,2)$.

Solution: Our goal is to carefully show that $e^{x}=P_{\infty}(x)$ for each $x \in(-2,2)$. Recall that

$$
\begin{equation*}
e^{x}=P_{N}(x)+R_{N}(x) \tag{1}
\end{equation*}
$$

where P_{N} is the $N^{\text {th }}$-order Taylor Polyonimal and R_{N} is the $N^{\text {th }}$-order Taylor Remainder. The remainder/error term R_{N} is defined so that (1) holds, i.e., R_{N} is defined as $R_{N}(x):=e^{x}-P_{N}(x)$. So to show that

$$
\text { for each } x \in(-2,2), \quad e^{x}=P_{\infty}(x),
$$

we need to show that

$$
\begin{equation*}
\text { for each } x \in(-2,2), \quad \lim _{N \rightarrow \infty}\left|R_{N}(x)\right|=0 . \tag{2}
\end{equation*}
$$

- Step 1: Find a good upper bound for $\left|R_{n}(x)\right|$ for $x \in(-2,2)$.

Consider an $x \in(-2,2)$. By Taylor's Remainder Theorem

$$
R_{N}(x)=\frac{f^{(N+1)}(c)}{(N+1)!} x^{N+1}
$$

for some c between x and the center 0 . Since $x \in(-2,2)$ and c is between x and 0 , we know that $c \in(-2,2)$. Thus

So a good upper bound for $\left|R_{N}(x)\right|$, for $x \in(-2,2)$, is

$$
\begin{equation*}
\left|R_{N}(x)\right| \leq e^{2} \frac{2^{N+1}}{(N+1)!} \tag{3}
\end{equation*}
$$

- Step 2: Show that the (good) upper bound we found in (3) tends to zero as $N \rightarrow \infty$.

So we want to show that $\lim _{N \rightarrow \infty} \frac{e^{2} 2^{N+1}}{(N+1)!}=0$. (Sometimes this step is easy but in this example we will have to use a little trick (tool) that sometimes works ... here we go). Let $a_{N}=\frac{e^{2} 2^{N+1}}{(N+1)!}$. (To show that $\lim _{N} a_{N}=0$, we will actually show something stronger, namely $\sum a_{N}$ converges.) The Ratio Test tells us that the series

$$
\sum_{n=0}^{\infty} \frac{e^{2}}{(n+1)!} 2^{n+1}
$$

is (absolutely) convergent since applying the Ratio Test we get

$$
\rho=\lim _{N \rightarrow \infty}\left|\frac{a_{N+1}}{a_{N}}\right|=\lim _{N \rightarrow \infty} \frac{e^{2} 2^{N+2}}{(N+2)!} \cdot \frac{(N+1)!}{e^{2} 2^{N+1}}=\lim _{N \rightarrow \infty} \frac{2}{N+2}=0 .
$$

The $n^{\text {th }}$ term test for divergence gives that if the series $\sum_{n} a_{n}$ converges, then the limit of the sequence $\left\{a_{n}\right\}_{n}$ is 0 , i.e. $\lim _{n \rightarrow \infty} a_{n}=0$. So $\lim _{N \rightarrow \infty} \frac{e^{2} 2^{N+1}}{(N+1)!}=0$.

- Step 3: Show that $\lim _{N \rightarrow \infty}\left|R_{N}(x)\right|=0$.

$$
0 \leq\left|R_{N}(x)\right| \stackrel{\text { by }(3)}{\leq} \frac{2^{N+1}}{(N+1)!} e^{2} \xrightarrow{\text { as } n \rightarrow \infty, \text { by Step } 2} 0 .
$$

The Squeeze/Sandwich Theorem gives that $\lim _{N \rightarrow \infty}\left|R_{N}(x)\right|=0$.

