Taylor/Maclaurin Polynomials and Series

Let y = f(x) be a function with derivatives of all orders in an interval I containing x_0 .

Let $y = P_N(x)$ be the Nth-order Taylor polynomial of y = f(x) about x_0 .

Let $y = R_N(x)$ be the Nth-order Taylor remainder of y = f(x) about x_0 .

Let $y = P_{\infty}(x)$ be the Taylor series of y = f(x) about x_0 .

Let c_n be the n^{th} Taylor coefficient of y = f(x) about x_0 .

a. The formula for c_n is

$$c_n = \frac{f^{(n)}(x_0)}{n!}$$

b. In open form (i.e., with \ldots and without a \sum -sign)

$$P_N(x) = \left| f(x_0) + f'(x_0)(x - x_0) + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2 + \frac{f^{(3)}(x_0)}{3!}(x - x_0)^3 + \dots + \frac{f^{(N)}(x_0)}{N!}(x - x_0)^N \right|$$

c. In closed form (i.e., with a \sum -sign and without \dots)

$$P_N(x) = \sum_{n=0}^{N} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

d. In open form (i.e., with \ldots and without a \sum -sign)

$$P_{\infty}(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots$$

e. In closed form (i.e., with a \sum -sign and without \dots)

$$P_{\infty}(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

f. We know that $f(x) = P_N(x) + R_N(x)$. Taylor's BIG Theorem tells us that, for each $x \in I$,

$$R_N(x) = \frac{f^{(N+1)}(c)}{(N+1)!} (x-x_0)^{(N+1)} \quad \text{for some } c \text{ between } x \quad \text{and } x_0.$$

g. A Maclaurin series is a Taylor series with the center specifically specified as $x_0 = 0$