Taylor/Maclaurin Polynomials and Series

Let y = f(x) be a function with derivatives of all orders in an interval I containing x_0 .

- Let $y = P_N(x)$ be the Nth-order Taylor polynomial of y = f(x) about x_0 .
- Let $y = R_N(x)$ be the Nth-order Taylor remainder of y = f(x) about x_0 .
- Let $y = P_{\infty}(x)$ be the Taylor series of y = f(x) about x_0 .
- Let c_n be the n^{th} Taylor coefficient of y = f(x) about x_0 .
- **a.** The formula for c_n is

$$c_n =$$

b. In open form (i.e., with \ldots and without a \sum -sign)

$$P_N(x) =$$

c. In closed form (i.e., with a \sum -sign and without \dots)

$$P_N(x) =$$

d. In open form (i.e., with \ldots and without a \sum -sign)

$$P_{\infty}(x) =$$

e. In closed form (i.e., with a \sum -sign and without \ldots)

$$P_{\infty}(x) =$$

f. We know that $f(x) = P_N(x) + R_N(x)$. Taylor's BIG Theorem tells us that, for each $x \in I$,

g. A Maclaurin series is a Taylor series with the center specifically specified as $x_0 = |$