Math 142 § 10.7 Taylor and Maclaurin Polynominals

Read this handout thoroughly and then
do Homeworks: 2, 4, 5, and 6 (on a seperate sheet of paper).

Let’s consider a function
y=f(z)
and fix a point zy in the domain of y = f(x). So the graph of y = f(z) goes through the point
(IO, f(.’Eo)) .

The equation of the tangent line to the graph of y = f(x) at the point (zg, f(x¢)) is found by:

y—y1=m(x— 1)

y — f(xo) = f'(x0)(x — z0)
y = f(wo) + f'(wo) (2 — o)
So the equation y = pi(z) of the tangent line to the graph of y = f(z) at the point (xq, f(xg)) is
pi(z) = f(z0) + f'(z0)(z — z0) - (1)

Recall that the function y = f(z) can be approximated locally near xy by this tangent line y = p1(z).

In other words, if  is close to z( then the value f(x) is close to the value p;(z),
that is, if &~ z¢ then f(x) =~ pi(x). (Draw yourself a picture.)

Example 1. f(z) = sin(z) near zo = 7 can be approximated by the line
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Homework 2. Find the equation of the tangent line to the function f(z) = — at the point xg = 2.
x

Note that this tangent line approximation works well because the tangent line to the graph of y = f(x) at
(x0, f(x0)) is the only line with slope f'(xo) passing through the point (xo, f(x¢)). We can generalize this
to second degree approximations by finding the parabola passing through the point (z¢, f(x¢)) with the
same slope (first derivative) as y = f(z) at xg and the same second derivative as y = f(x) at xo.

Example 3. Consider f(z) = e~V at zy = 1. Such a parabola as we want looks like
p2(z) = co +cr(z —1) + ca(z — 1)2

and we can find the constants ¢, c1, ca to make the derivatives of y = f(z) and y = pa(x) match up at
zo = 1. We have

p2(z) =cog+ cr(z — 1) + co(z — 1)2 and flz) =e @D
po(x) = c1 + 2c2(x — 1) and fl(z) =—e~@D
Pa(x) = 2¢o and f"(z)= 4~ (@=1)
and evaluating these at zo = 1 gives us
p2(1l) =co and f)=e©=1
py(1) =1 and  f(1)=—© = _1
Pa(1) = 2¢ and ') = 40 — 1
and so
p2(1) = f(1) & co=1
pa(1) = f'(1) A cp=-1
pa(1) = f"(1) & 2=1 N =1

So our parabola is
1
po(w) = 1= (@ —1)+ 5z - 1)

This polynomial is the second order Taylor polynomial of y = e~ (*~1) centered at zy = 1. Notice that close
to x=1 this parabola approximates the function rather well.




Using this as a model we can give a general form of the second order Taylor polynomial for y = f(x) at x,
that is the parabola

p2(2) = co + c1(x — xg) + co(x — 20)>
where we want to find the constants ¢y, c1, co to make the derivatives of y = f(z) and y = p2(x) match
up at x = x¢. We have

p2(z) = co + c1(z — x0) + co(x — 20)> = pa(xo) = co
(1) = c1 + 2¢2(z — x0) == py(z0) =1
py(z) = 2¢2 = p5(z0)= 2c;
and so
p2(z0) = f(0) — co = f(zo)
pa(xo) = f'(20) — c1 = f'(xo)
pwo) = ") = 2e=f"x) = a=TH0
So our parablola is .
p(x) = Flao) + Flao)(w — z0) + L0 )2 2

Compare the function y = p;(x) in formula (1) with the function y = pa(x) in formula (2).
Starting to see a pattern?

Homework 4. Find the second order Taylor polynomial for f(x) = % at £g = —2. Draw a picture.



Higher order Taylor polynomials are found in the same way. For example, the third order Taylor polynomial
for a function y = f(x) centered at x is

f"(xo) f" (o)

p3(z) = f(z0) + f'(z0)(z — z0) + ol (x — o) + T(x —x0)” .
In general, the N*"-order Taylor polynomial for y = f(z) at x is:
e N) (2
par@) = (o) + Fao)o — w0) + T g g LD g
which can also be written as (recall that 0! = 1)
(0) (1 2) (N)
pn(z) = ! 0('960) + / 1('960) (x — o) + ! 2(':1:0) (x —m0)? + -+ fT('xO)(x —20)V . (N - open form)

Formula (N - open form) is in open form. It can also be written in closed form, by using sigma notation, as

L0 ()
pn(z) = Z . (x — o)™ . (N- closed form)
n=0
So y = pn(x) is a polynomial of degree at most N and it has the form
N
pn(z) = ch (x — )"
n=0
where the ¢,’s
_ £ (20)

Cn |
n:

are specially chosen so that

PV (@) = F™(xy) .

The constant ¢, is called the n'® Taylor coefficient of y = f(x) about zq.

The N*-order Maclaurin polynomial for y = f(z) is just

the N*-order Taylor polynomial for y = f(x) at g = 0 and so it is
R A

n!

pn ()

n=0

Homework 5. Compute the fifth order Maclaurin polynomial (i.e. y = ps(x)) for f(z) = sin(3z).



Why are higher order Taylor polynomials better? Let’s look at some graphs from Homework 5. To follow
are graphs of y = sin(3z) along with its Maclaurin polynomial y = py(z) for N =1,3,4,7,9,11,13.
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FIGURE 1. y = sin(3x) along with its first order Maclaurin Polynomial y = p;(x)
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FIGURE 3. y = sin(3x) along with its third order Maclaurin Polynomial y = p3(z)



FIGURE 5. y = sin(3x) along with its fifth order Maclaurin Polynomial y = p5(x)
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FIGURE 7. y = sin(3z) along with its 7*" order Maclaurin Polynomial 3 = pr(x)



FIGURE 9. y = sin(3z) along with its 9*" order Maclaurin Polynomial 3 = pg(z)

FIGURE 11. y = sin(3z) along with its 11*" order Maclaurin Polynomial y = p11(x)



FIGURE 13. y = sin(3z) along with its 13'" order Maclaurin Polynomial y = p13(x)

Notice that as N increases the approximation of y = sin(3z) by y = pn(x) gets better and better, even
over a wider and wider interval around the center zp = 0. So for a fixed = the approximation of y = f(x)
by y = pn(x) becomes more accurate as N gets bigger.

Homework 6. Find the Maclaurin polynomials: y = p1(z), y = ps(z), y = ps(x), y = p7(z), y = po(x),
y = p11(x), and y = p13(z) above (i.e., for y = sin(3x) about xy = 0).

Just to think about. Take another look at Homework 6. Do you notice any pattern in the Taylor
coefficients? Why did we only use odd-order Taylor polynomials?



