
Math 142 § 10.7 Taylor and Maclaurin Polynominals
Read this handout thoroughly and then
do Homeworks: 2, 4, 5, and 6 (on a seperate sheet of paper).

Let’s consider a function
y = f(x)

and fix a point x0 in the domain of y = f(x). So the graph of y = f(x) goes through the point

(x0, f(x0)) .

The equation of the tangent line to the graph of y = f(x) at the point (x0, f(x0)) is found by:

y − y1 = m(x − x1)

y − f(x0) = f ′(x0)(x − x0)

y = f(x0) + f ′(x0)(x − x0)

So the equation y = p1(x) of the tangent line to the graph of y = f(x) at the point (x0, f(x0)) is

p1(x) = f(x0) + f ′(x0)(x − x0) . (1)

Recall that the function y = f(x) can be approximated locally near x0 by this tangent line y = p1(x).
In other words, if x is close to x0 then the value f(x) is close to the value p1(x),
that is, if x ≈ x0 then f(x) ≈ p1(x). (Draw yourself a picture.)

Example 1. f(x) = sin(x) near x0 = π
4 can be approximated by the line
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Homework 2. Find the equation of the tangent line to the function f(x) =
1
x

at the point x0 = 2.

Note that this tangent line approximation works well because the tangent line to the graph of y = f(x) at
(x0, f(x0)) is the only line with slope f ′(x0) passing through the point (x0, f(x0)). We can generalize this
to second degree approximations by finding the parabola passing through the point (x0, f(x0)) with the
same slope (first derivative) as y = f(x) at x0 and the same second derivative as y = f(x) at x0.

Example 3. Consider f(x) = e−(x−1) at x0 = 1. Such a parabola as we want looks like

p2(x) = c0 + c1(x − 1) + c2(x − 1)2

and we can find the constants c0, c1, c2 to make the derivatives of y = f(x) and y = p2(x) match up at
x0 = 1. We have

p2(x) = c0 + c1(x − 1) + c2(x − 1)2 and f(x) = e−(x−1)

p′2(x) = c1 + 2c2(x − 1) and f ′(x) = –e−(x−1)

p′′2(x) = 2c2 and f ′′(x)= +e−(x−1)

and evaluating these at x0 = 1 gives us

p2(1) = c0 and f(1) = e−(0) = 1

p′2(1) = c1 and f ′(1) = –e−(0) = −1

p′′2(1) = 2c2 and f ′′(1) = +e−(0) = 1

and so

p2(1) = f(1) ⇔ c0 = 1

p′2(1) = f ′(1) ⇔ c1 = −1

p′′2(1) = f ′′(1) ⇔ 2c2 = 1 ⇔ c2 = 1
2 .

So our parabola is

p2(x) = 1 − (x − 1) +
1
2
(x − 1)2.

This polynomial is the second order Taylor polynomial of y = e−(x−1) centered at x0 = 1. Notice that close
to x=1 this parabola approximates the function rather well.
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Using this as a model we can give a general form of the second order Taylor polynomial for y = f(x) at x0,
that is the parabola

p2(x) = c0 + c1(x − x0) + c2(x − x0)2

where we want to find the constants c0, c1, c2 to make the derivatives of y = f(x) and y = p2(x) match
up at x = x0. We have

p2(x) = c0 + c1(x − x0) + c2(x − x0)2 =⇒ p2(x0) = c0

p′2(x) = c1 + 2c2(x − x0) =⇒ p′2(x0) = c1

p′′2(x) = 2c2 =⇒ p′′2(x0)= 2c2

and so

p2(x0) = f(x0) ⇐⇒ c0 = f(x0)

p′2(x0) = f ′(x0) ⇐⇒ c1 = f ′(x0)

p′′2(x0) = f ′′(x0) ⇐⇒ 2c2 = f ′′(x0) ⇐⇒ c2 = f ′′(x0)
2 .

So our parablola is

p(x) = f(x0) + f ′(x0)(x − x0) +
f ′′(x0)

2!
(x − x0)2 . (2)

Compare the function y = p1(x) in formula (1) with the function y = p2(x) in formula (2).
Starting to see a pattern?

Homework 4. Find the second order Taylor polynomial for f(x) = 1
x at x0 = –2. Draw a picture.
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Higher order Taylor polynomials are found in the same way. For example, the third order Taylor polynomial
for a function y = f(x) centered at x0 is

p3(x) = f(x0) + f ′(x0)(x − x0) +
f ′′(x0)

2!
(x − x0)2 +

f ′′′(x0)
3!

(x − x0)3 .

In general, the N th-order Taylor polynomial for y = f(x) at x0 is:

pN (x) = f(x0) + f ′(x0)(x − x0) +
f ′′(x0)

2!
(x − x0)2 + · · · + f (N)(x0)

N !
(x − x0)N ,

which can also be written as (recall that 0! = 1)

pN (x) =
f (0)(x0)

0!
+

f (1)(x0)
1!

(x − x0) +
f (2)(x0)

2!
(x − x0)2 + · · · + f (N)(x0)

N !
(x − x0)N . (N - open form)

Formula (N - open form) is in open form. It can also be written in closed form, by using sigma notation, as

pN (x) =
N∑

n=0

f (n)(x0)
n!

(x − x0)n . (N- closed form)

So y = pN (x) is a polynomial of degree at most N and it has the form

pN (x) =
N∑

n=0

cn (x − x0)n

where the cn’s

cn =
f (n)(x0)

n!
are specially chosen so that

pN (x0) = f(x0)

p
(1)
N (x0) = f (1)(x0)

p
(2)
N (x0) = f (2)(x0)

...

p
(N)
N (x0) = f (N)(x0) .

The constant cn is called the nth Taylor coefficient of y = f(x) about x0.
The N th-order Maclaurin polynomial for y = f(x) is just
the N th-order Taylor polynomial for y = f(x) at x0 = 0 and so it is

pN (x) =
N∑

n=0

f (n)(0)
n!

(x)n .

Homework 5. Compute the fifth order Maclaurin polynomial (i.e. y = p5(x)) for f(x) = sin(3x).
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Why are higher order Taylor polynomials better? Let’s look at some graphs from Homework 5. To follow
are graphs of y = sin(3x) along with its Maclaurin polynomial y = pN (x) for N = 1, 3, 4, 7, 9, 11, 13.
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Figure 1. y = sin(3x) along with its first order Maclaurin Polynomial y = p1(x)
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Figure 3. y = sin(3x) along with its third order Maclaurin Polynomial y = p3(x)
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Figure 5. y = sin(3x) along with its fifth order Maclaurin Polynomial y = p5(x)
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Figure 7. y = sin(3x) along with its 7th order Maclaurin Polynomial y = p7(x)
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Figure 9. y = sin(3x) along with its 9th order Maclaurin Polynomial y = p9(x)
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Figure 11. y = sin(3x) along with its 11th order Maclaurin Polynomial y = p11(x)
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Figure 13. y = sin(3x) along with its 13th order Maclaurin Polynomial y = p13(x)

Notice that as N increases the approximation of y = sin(3x) by y = pN (x) gets better and better, even
over a wider and wider interval around the center x0 = 0. So for a fixed x the approximation of y = f(x)
by y = pN (x) becomes more accurate as N gets bigger.

Homework 6. Find the Maclaurin polynomials: y = p1(x), y = p3(x), y = p5(x), y = p7(x), y = p9(x),
y = p11(x), and y = p13(x) above (i.e., for y = sin(3x) about x0 = 0).

Just to think about. Take another look at Homework 6. Do you notice any pattern in the Taylor
coefficients? Why did we only use odd-order Taylor polynomials?
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