Part 1 — Fill in the box

Let y = f(x) be a function with derivatives of all orders in an interval I containing x_0 .

Let $y = P_N(x)$ be the Nth-order Taylor polynomial of y = f(x) about x_0 .

Let $y = R_N(x)$ be the Nth-order Taylor remainder of y = f(x) about x_0 .

Let $y = P_{\infty}(x)$ be the Taylor series of y = f(x) about x_0 .

Let c_n be the n^{th} Taylor coefficient of y = f(x) about x_0 .

A. In open form (i.e., with ... and without a \sum -sign)

 $P_N(x) =$

B. In closed form (i.e., with a \sum -sign and without ...)

 $P_N(x) =$

C. In open form (i.e., with \ldots and without a \sum -sign)

$$P_{\infty}(x) =$$

D. In closed form (i.e., with a \sum -sign and without ...)

 $P_{\infty}(x) =$

E. We know that $f(x) = P_N(x) + R_N(x)$. Taylor's BIG Theorem tells us that, for each $x \in I$,

$R_N(x) =$	for some c between	and	.

1

F. The formula for c_n is

 $c_n =$

Do parts (a) - (i) for the following three problems.

	· ·		
(1)	$f(x) = \cos(17x)$	$x_0 = 0$	$J=(-\infty,\infty)=\mathbb{R}$
(2)	$f(x) = (1+x)^{-3}$	$x_0 = 0$	$J = \left(0, \frac{1}{2}\right)$
(3)	$f(x) = e^x$	$x_0 = 17$	J = (16, 19)

You might find it easier to do problems (a) - (i) in a different order. Just do what you find easiest.

Use only:

- the definition of Taylor polynominal
- the definition of Taylor series
- the theorem/error-estimate on the N^{th} -Remainder term for Taylor polynomials.

Do NOT use a known Taylor Series (i.e., do not use methods from section 10.10).

a. Find the following. Note the first column are functions of x and the second column are numbers.

$f^{(0)}(x) =$	$f^{(0)}(x_0) =$
$f^{(1)}(x) =$	$f^{(1)}(x_0) =$
$f^{(2)}(x) =$	$f^{(2)}(x_0) =$
$f^{(3)}(x) =$	$f^{(3)}(x_0) =$
$f^{(4)}(x) =$	$f^{(4)}(x_0) =$

b. Find the Nth-order Taylor polynomial of y = f(x) about x_0 in OPEN form for N = 0, 1, 2, 3, 4.

$P_0(x) =$	
$P_1(x) =$	
$P_2(x) =$	
$P_{3}(x) =$	
$P_4(x) =$	

c. Find the Taylor series of y = f(x) about x_0 in OPEN form.

 $P_{\infty}(x) =$

d. Find the Taylor series of y = f(x) about x_0 in CLOSED form.

 $P_{\infty}(x) =$

e. Find the n^{th} Taylor coefficient of y = f(x) about x_0 .

 $c_n =$

f. Find the interval of convergence I of the Taylor series of y = f(x) about x_0 . Recall, the interval of convergence is the set of points for which the series converges, either absolutely or conditionally. (Hint: use the ratio or root test and then check the endpoints.)

I =

g. Consider the given interval J and fix an $N \in \mathbb{N}$. Find an upper bound for the maximum of $|f^{(N+1)}(x)|$ on the interval J. You answer can have an N in it but it cannot have an: x, x_0, c . (Note that J is a subset of I but Prof. G. might have picked a smaller J than I to make the problem easier.)

 $\max_{c\in J} \left| f^{(N+1)}(c) \right| \leq$

h. Consider the given interval J and fix an $N \in \mathbb{N}$. For each $x \in J$, find an upper bound for the maximum of $|R_N(x)|$. You answer can have an N and x in it but it cannot have an: x_0 , c.

 $|R_N(x)| \leq$

i. Carefully show that $f(x) = P_{\infty}(x)$ for each x in the given interval J by showing that $\lim_{N \to \infty} |R_N(x)| = 0$ for each $x \in J$.