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‘ / 7 dx 36 dx Evaluate
5, - — : - = ‘

(x— DVx*—2x— 48 (2x + DViax + 42 (1 + 39)edr.

'20° — 76* + 76 46 38 db

20 — 5 * [ cosf —1 48. Use the substitution ¥ = tan x to evaluate the integral

y [_dx Vx _dx
“ 1+ € 40. 1+x3d.x 1 + sin®x’
| Hint: Use long division. Hint: Let u = x"2, 49, Use the substitution ¥ = x* + 1 to evaluate the integral
heory and Examples
I, Area Find the area of the region bounded above by y = 2 cos x / x'Vx* + 1dx.

and below by y = secx, —7/4 < x = w/4. o, Usine di ) _
p. Volume Find the volume of the solid generated by revolving 50. Using different substitutions Show that the integral

the region in Exercise 41 about the x-axis.
B, Arc length Find the length of the curve y = In(cosx),

t 0= x=7/3. can be evaluated with any of the following substitutions.
4, Arc length Find the length of the curve y = In(sec.x), a u=1/x+1

/ (2 = D(x + 1) H3dx

But 0% % = w/d _ b u=((x — 1)/(x + 1) for k= 1, 1/2, 1/3, =1/3, =2/3,
[oreover§ills, Centroid Find the centroid of the region bounded by the x-axis, and —1
is oddi = i =- = /4,
tis od | the curve y .sec x, and th'e lines x ' m/4 x=m/ . . N d u = tan-! V5
. Centroid Find the centroid of the region bounded by the x-axis, e u=tan-!((x— 1)/2) L u=cosx

' the curve y = csc x, and the lines x = /6, x = 57/6.

] — -1
. The functions y = ¢* and y = x’¢* do not have elementary anti- i

derivatives, but y = (1 + 3x%)e* does. What is the value of the integral?

U .2 Integration by Parts

Integration by parts is a technique for simplifying integrals of the form

/ fx)g(x) dx.

It is useful when f can be differentiated repeatedly and g can be integrated repeatedly
without difficulty. The integrals

/xcosxdx and /xze"dx

are such integrals because f(x) = x or f(x) = x* can be differentiated repeatedly to
become zero, and g(x) = cos x or g(x) = €* can be integrated repeatedly without diffi-
culty. Integration by parts also applies to integrals like

/lnxdx and /e"cosxdx.

In the first case, f(x) = In x is easy to differentiate and g(x) = 1 easily integrates to x. In
the second case, each part of the integrand appears again after repeated differentiation or
integration.

+
w

Product Rule in Integral Form

If f and g are differentiable functions of x, the Product Rule says that

L1 fg()] = f'(DeR) + Fg' ).
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In terms of indefinite integrals, this equation becomes

/ %[f(x)g(x)] dx = / [f'(xgx) + fxg'(x)] dx
or

| %[f(fc)g(x)] dx = / f'(x)gx) dx + / fx)g'(x) dx.

Rearranging the terms of this last equation, we get

/ fx)g'(x) dx = / ad;[f(X)g(X)] dx — / f'(x)g(x) dx,

leading to the integration by parts formula

_/ f(x)g'(x)dx = f(x)g(x) — / f'(x)g(x) dx (1)

! Sometimes it is easier to remember the formula if we write it in differential form. L
,:_'.. u = f(x) and v = g(x). Then du = f'(x)dx and dv = g'(x)dx. Using the Substituti
b, Rule, the integration by parts formula becomes

Integration by Parts Formula

/udv=uv—/vdu (2) ‘

i This formula expresses one integral, f u dv, in terms of a second integral, f v
With a proper choice of u and v, the second integral may be easier to evaluate than
first. In using the formula, various choices may be available for u and dv. The next exar
ples illustrate the technique. To avoid mistakes, we always list our choices for « and
then we add to the list our calculated new terms du and v, and finally we apply the fo
in Equation (2).

EXAMPLE 1 Find

/xcosxd.x.

Solution We use the formula [udv = uv — [ v du with

cos x dx,

u=x, dv

a
=
|
=
<
Il

sin x. Simplest antiderivative of cos v
B
B Then

/xcosxdx = xsinx — /sinxdx = xsinx + cosx + C.

There are four apparent choices available for « and dv in Example 1:

1. Letu = 1 and dv = x cos x dx. 2. Let u = x and dv = cos x dx.
3. Let u = xcos x and dv = dx. 4, Let u = cos x and dv = xdx.
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Choice 2 was used in Example 1. The other three choices lead to integrals we don’t know how
to integrate. For instance, Choice 3, with du = (cos x — X sin x) dx, leads to the integral

/(x cos x — X% sin x) dx.

The goal of integration by parts is to go from an integral f u dv that we don’t see how
to evaluate to an integral f v du that we can evaluate. Generally, you choose dv first to be
as much of the integrand, including dx, as you can readily integrate; u is the leftover part.
When finding v from dv, any antiderivative will work and we usually pick the simplest
one: no arbitrary constant of integration is needed in v because it would simply cancel out
of the right-hand side of Equation (2).

EXAMPLE 2  Find

/ln x dx.

Solution  Since flnxdx can be written as flnx-ldx, we use the formula

fudv=uv— fvduwith

u=1Inx Simplifies when differentiated dv = dx Easy Lo integrate
1 .
du = ;dx v =X Simplest antiderivative
Then from Equation (2),

/1nxdx=xlnx—/x-%dx=xlnx—/dx=x1nx—x+C. ®

Sometimes we have to use integration by parts more than once.

/ x2et dx.

Solution With u = 2. dv = € dx,du = 2x dx, and v = €, we have

/xze‘dx = x2¢* — 2/ xe* dx.

The new integral is less complicated than the original because the exponent on x is reduced
by one. To evaluate the integral on the right, we integrate by parts again with
u = x,dv = ¢ dx. Then du = dx,v = €, and

EXAMPLE 3 Evaluate

/xe*dx=xe‘—/e‘dx=xe‘—e"+C.

Using this last evaluation, we then obtain
/ x2e* dx

where the constant of integration is renamed after substituting for the integral on the right.

I

xze"—Z-/.xe"dx

= x2&* — 2xe* + 2¢° + C,

The technique of Example 3 works for any integral f "¢* dx in which n is a positive
integer, because differentiating x" will eventually lead to zero and integrating e* is easy-

Integrals like the one in the next example occur in electrical engineering. Their evalu-
ation requires two integrations by parts, followed by solving for the unknown integral.
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EXAMPLE 4 Evaluate

/e" cos x dx.

Solution Letu = ¢ and dv = cos x dx. Then du = € dx, v = sinx, and
/e‘cosxdx = e¢*sinx — /e"sinxdx

The second integral is like the first except that it has sin x in place of cos x. To evaluate|
we use integration by parts with

u = e, dv = sin x dx, v = —COS X, du = €' dx.

/er cos xdx = €“sinx — (—e" cos x — /(—cos x)(e* dx))

= ¢'sinx + e*cosx — /e‘cosxdx.

Then

The unknown integral now appears on both sides of the equation. Adding the integral
both sides and adding the constant of integration give

Z/e‘cosxdx = ¢'sinx + e¢‘cosx + C).

Dividing by 2 and renaming the constant of integration give

esinx + e cos x
/e‘cosxdx= ==

2

EXAMPLE 5  Obtain a formula that expresses the integral

/ cos" x dx

in terms of an integral of a lower power of cos x. .

Solution 'We may think of cos” x as cos”~! x + cos x. Then we let
u=cos" 'x and dv = cosxdx,
so that
n—2

du = (n — 1) cos"* x (—sin x dx) and v = sin x.

Integration by parts then gives

/cos"xd.x =cos" 'xsinx + (n — 1)/sin2xcos”‘2xdx

=cos" lxsinx + (n —'1)/(] — cos? x) cos" % x dx

cos" lxsinx + (n — l)/cos"'zxdx - (n— 1)/cos"xa’x.

(n — l)/cos”xdx

If we add




oy

RE8.1 The region in Example 6.

8.2 Integration by Parts 465

to both sides of this equation, we obtain
n/cos"xdx = cos" lxsinx + (n — 1)/005"‘2xdx.
We then divide through by n, and the final result is
/cos" xdx = c_’____os""nx B & i%l/cos”'zx dx. &

The formula found in Example 5 is called a reduction formula because it replaces an inte-
gral containing some power of a function with an integral of the same form having the
power reduced. When n is a positive integer, we may apply the formula repeatedly until the
remaining integral is easy 10 evaluate. For example, the result in Example 5 tells us that

2 .
costxsinx , 2
/cos3xdx=————3S +§/ os x dx

cos? x sin x + %sinx + C.

W —

Evaluating Definite Integrals by Parts

The integration by parts formula in Equation (1) can be combined with Part 2 of the Fun-
damental Theorem in order to evaluate definite integrals by parts. Assuming that both f’
and g’ are continuous over the interval [a, b], Part 2 of the Fundamental Theorem gives

Integration by Parts Formula for Definite Integrals

b b b
f(x)g'(x)dx=f(x)g(x)t\ - / f'(x)g(x) dx (3)

EXAMPLE 6  Find the area of the region bounded by the curve y = xe™* and the
x-axis from x = 0tox = 4.

Solution The region is shaded in Figure 8.1. Its area is

4
/ xe * dx.
0

Letu = x,dv = ¢ *dx,v = —¢™~, and du = dx. Then,

4 4
/ xe *dx = —xe"}é = / (—e™) dx
0 0
4

[—4e™ - (—0e79] +/ e dx

0

= —4¢* — e_"]g

= —4et — (¢t — e =1-5"= 091l ]

Tabular Integration Can Simplify Repeated Integrations

We have seen that integrals of the form f f(x)g(x) dx, in which f can be differentiated repeat-
edly to become zero and g can be integrated repeatedly without difficulty, are natural caridi-
dates for integration by parts. However, if many repetitions are required, the notation and calcu-
lations can be cumbersome; or, you choose substitutions for a repeated integration by parts that

just ends up giving back the original integral you were trying to find. In situations like these,
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there is a nice way to organize the calculations that prevents these pitfalls and simplifies
work. It is called tabular integration and is illustrated in the next examples.

/ x2e* dx.

Solution  With f(x) = x* and g(x) = €, we list:

EXAMPLE 7 Evaluate

f(x) and its derivatives g(x) and its integrals
x (+) €
2 = €
2 (+) ¢
0 s

We combine the products of the functions connected by the arrows according to the o
tion signs above the arrows to obtain

/x-’-e‘dx = x%¢* — 2xe* + 2¢* + C.
Compare this with the result in Example 3.
EXAMPLE 8  Find the integral

1;/ f(x) cos nx dx

x} on [0, 7], where n is a positive integer.

for f(x) = 1 on [—, 0)and f(x)
Solution The integral is

T 0 -
%/ f(x)cosnxdx—%/ cosmcdx+%/x3cos nx dx
-

- 0

Il

0 m
| 1 3
nr Sin nx + = Oxcosnxdx

=

m
1 3
T | X’ cos nx dx.

Using tabular integration to find an antiderivative, we have

f(x) and its derivatives g(x) and its integrals

3 cOS nx

— @
3x2\(—)‘ % sin nx
1

X

6x (+) ——5 COS nx
\A n-

6 ) ~Linnx
n
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1023 . 3x3 6x . 6 =
= = 781nnx+—-2—cosnx——3—smnx——4cosn.x
n n n 0

2 4 4

_ l(?mz cosnar _ 6cosnm _6_)
™
n n

3 ('n'znz(-l)" + 21" + 2>
= = 7 . cosnm = (—1)

o n
&
Integrals like those in Example 8 occur frequently in electrical engineering.
lIntegration by Parts i
Evaluate the integrals in Exercises 1-24 using integration by parts. 27. / xtan? x dx 28. / In (x + x%) dx
0
1. /xsin'%dx 2. /Gcoswede
29. /sin (In x) dx 30. /z(ln 2*dz
3. /rzcosrdt 4. /xzsinxdx
) Evaluating Integrals
2 d ; Evaluate the integrals in Exercises 31-52. Some integrals do not
5. /1 x In xdx 6. /1 X% In xdx require integration by parts.
Vax
1. e LB
1. /xe‘dx 8. /xe-“dx ? /”ec & B, [T E
1
. In x)? o =
9, /xze“"dx 10. /(xz"lx'*‘ 1)e** dx = /x(nx) o 34 ,/x(lnx)'dx
In x (In x)*
1. /tan “lydy 12. /sin“ ydy 5 x2 @ % / ¥
X 37. [xedx 38./-‘e!’dx
13, / xsec? x dx 14, / 4x sec? 2x dx / ve *
A 32 + F 3 gt o3
ks /x3e‘cix 6. /p“e"’dp 39 /x X2 + ldx 40 /x sin %3 dx
41. /sin 3x cos 2x dx 42. /sin 2x cos 4x dx
17. /(x2 — 5x)efdx 18. /(r2 +r+ De'dr
‘ Vi
43./\/;1nx¢x 4. [“=adx
A / x3e* dx 20. / e dt Vx
45. [ cos Vixdx 46. /\/;e‘&dx
2. /e” sin 6 df 22, /e"' cos y dy
w/2 w/2
2 g 3
2. /e’-‘ cos 3x dx 24. /e‘z" sin 2x dx 2 /0 6% sin20 49 48. /O x° cos 2x dx
: 2 1/V2
Using Substitution 49, / rsec™! tdt 50. 2x sin~! (x2) dx
‘Evaluate the integrals in Exercise 25-30 by using a substitution prior >V3 ¢
to integration by parts.
ppinicgration Y P 51. /xlan"xdx 52. /xztan“gdx

1
25. /e”“*“ds 26. /xvl —x dx
0



468

Chapter 8: Techniques of Integration

Theory and Examples
53. Finding area Find the area of the region enclosed by the curve
y = xsinx and the x-axis (see the accompanying figure) for
a 0=sx=m.
b. m =x =27
c. 27 = x =3m
d. What pattern do you see here? What is the area between the
curve and the x-axis for nm = x = (n + 1), n an arbitrary
nonnegative integer? Give reasons for your answer.

y

10 y=xsinx
)
N .
0 1'\/217 37
-5

54. Finding area Find the area of the region enclosed by the curve
y = x cos x and the x-axis (see the accompanying figure) for

a. 7/2 =x=3m/2

b. 37/2 = x < 57/2.

c. Sm/2=x=7Tm/2

d. What pattern do you see? What is the area between the curve
and the x-axis for

n an arbitrary positive integer? Give reasons for your answer.

y

10 y = XCOSX

— X

0 (Ll 3m S s
-10

55. Finding volume Find the volume of the solid generated by
revolving the region in the first quadrant bounded by the coordi-
nate axes, the curve y = &, and the line x = In 2 about the line

x=1In2

56. Finding volume Find the volume of the solid generated by
revolving the region in the first quadrant bounded by the coordi-
nate axes, the curve y = ¢ %, and the line x = 1

a. about the y-axis.
b. about the line x = 1.

57. Finding volume Find the volume of the solid generated by
revolving the region in the first quadrant bounded by the coordi-
nate axes and the curve y = cosx,0 = x =7 /2, about

a. the y-axis.
b. the line x = 7/2.

58. Finding volume Find the volume of the solid generated §

revolving the region bounded by the x-axis and the cur¥
y =xsinx,0 =x=m, about
a. the y-axis.
b. the line x = 7.
(See Exercise 53 for a graph.)
59. Consider the region bounded by the graphs of y = Inx,y =%
and x = e.
a. Find the area of the region.
b. Find the volume of the solid formed by revolving this region
about the x-axis.
¢. Find the volume of the solid formed by revolving this region
about the line x = —2. '
d. Find the centroid of the region.
Consider the region bounded by the graphs of y = tan~ x,y =/
and x = 1. .
a. Find the area of the region.
b. Find the volume of the solid formed by revolving this regio
about the y-axis. g

61. Average value A retarding force, symbolized by the dashpoti
the accompanying figure, slows the motion of the weighted sp if
5o that the mass’s position at time ? is

t=0.

60

y = 2¢”"cos t,

Find the average value of y over the interval 0 =< t = 2.

62. Average value Ina mass-spring-dashpot system like the oné

Exercise 61, the mass’s position at time is
y = 4e”'(sint — cos 1), t=0.

Find the average value of y over the interval 0 < ¢t = 2m.
Reduction Formulas

In Exercises 6367, use integration by parts to establish the reduct
formula.

63. /x"cosxd.x = x"sinx — n/x""sinxd.x

64. /x"sinxd.x = —x"cosx + n/x’"‘cosxdx




oy

et 65, /x”e‘“dx———-— /x” le%dy, a# 0

66. /(ln x)"dx = x(Inx)" — n/(ln x)"Vdx

e B xm+l _ n .
67. -/x’"(lnx)"dx—m+ 1(1!1)6)" 1
/.K"(lnx)""‘d.x. m#—1

‘I 68. Use Example 5 to show that

/2
/ sin" xdx = / cos”xdx
0
1- 1)
( ) 6 , neven
24
1-

6- ( 1)
35 T ——— nodd

69. Show that

[([me)s

70, Use integration by parts to obtain the formula

ST Fge =i VI 2 1/ 1
/1 x*tdx 2x 1 x+2/\/i___x1d.x

b
=/(x—a)f(x)dx. ’

Integrating Inverses of Functions
Integration by parts leads to a rule for integrating inverses that usually
| gives good results:

-l ; y= )0 v = ()
fTiwdx = yf')ay dx = f'(vrdv

Integration by parts with

Il

u = v.dve = f'(V)dr

yf) - / fo) dy

xf~ %) — /f(,v) dy

The idea is to take the most complicated part of the integral, in this
case £~'(x). and simplify it first. For the integral of In x, we get

/lnxdx = /ye»"dy

=yed—e+C
=xlnx—x+ C.

yv=Inyx, x=¢

dv = e'dy

8. 3 Trigonometric Integrals
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For the integral of cos™ x we get

/cos" xdx = xcos'x — /cos ydy

= xcos'x—siny + C

v = cos "
= xcos™ x — sin (cos™ x) + C.

Use the formula

/f"(x)dx = xf~'(x) = _/f(y) dy v=[ 1w @

to evaluate the integrals in Exercises 71-74. Express your answers in

terms of x.
72 / tan~! x dx

71. /sin“xdx
73. /sec'lxdx 74. /loggxd.x

Another way to integrate f~ I(x) (when f~! is integrable, of
course) is to use mtevrauon by parts with u = f~ '(x) and dv = dx to
rewrite the integral of f~! as

f £ dx = xf ) - / x (;j;f“(x)) dx. 5)

Exercises 75 and 76 compare the results of using Equations (4) and (5).
75. Equations (4) and (5) give different formulas for the integral of

cos™! x:
a. /cos‘1 xdx = xcos'x — sin (cos™'x) + C Fq. (9
b. /cos“xdx=xcos"‘x— V1i-x+C Eq. (5)

Can both integrations be correct? Explain.

76. Equations (4) and (5) lead to different formulas for the integral of
~1

tan~! x:
a. /tan”‘xdx = xtan"' x — Insec (tan”'x) + C Fig. (4)
b, /tan"xdx=xtan“.x—ln V1i+x2+C Eq. (5)

Can both integrations be correct? Explain.
Evaluate the integrals in Exercises 77 and 78 with (a) Eq. (4) and (b)
Eq. (5). In each case, check your work by differentiating your answer
with respect to x.

77. /sinh"xdx 78. /ta.nh”xdx

Trigonometric integrals involve algebraic combinations of the six basic trigonometric
functions. In principle, we can always express such integrals in terms of sines and cosines,
but it is often simpler to work with other functions, as in the integral

/seczxdx =tanx + C.



Chapter 8: Answers to Odd-Numbered Exercises A-33

Section 8.2, pp. 467-469 19. —4 sinx cos® x + 2 cosxsinx + 2x + 8y
1. —2xcos (x/2) + 4sin x/2)+ C 21, —cos*26 + C 23. 4 25. 2
3. sint + 2tcost — 2sint + C s/2 12
3 2 4(3 18 2(3
s.m4-3 Tar-e+C 27'\/; 3 29'5(2) 35 7(2) 3. V2
9, —(x2 + 2 +2)e*+ C 3. Jutx+C 35 lecz+c 3. Lanx+C
ll.ytan'l(y)—an1+y2+C
13. xtanx + In |cosx| + C 39.2V3+In(2+V3) 4L %ta.ne - —;-seczotane +C
15.(13—3X2+6X—6)€‘+C 17. (x2—7x+7)e‘+C 43.4/3 45. 2tanzx—2ln(1+tan2x)+C
19, (x° — 5x* + 20x3 — 60x2 + 120x — 120)e* + (& | 1 4
1 ) 47. Lian*x — stan’x + Insecx| + C  49. z-mnV3
o1, 5(—e"cos9 + éfsing) + C 4 2 3
e 51.—-1-0055x—lcosx+c 53. w
23, & (3sin3x + 2cos 3x) + C 10 2
3 14 + 1 g Ix + C
E.%(mem—em)+c 85 gEnx T e = :
1.3 1 ;
2 57. Zsin30 — ~sinf — Z=sin50 + C
27.7—%3—1“2)—% 62 4 201 ,
1 c 59, —gcos56+C 61. ZcosO—Ec0559+C
L _xcos(inx) + xsin(inx)] +
2 2[ xcos (In.x) + ¥ sin (In-0)} 63. secx — In |cscx + cotx| + C 65. cosx + secx + C
1
31, 7 In[sec? + tan 2’| + C 67. 3 —i—xsinlx—%coslx+ c 6. In(1+V2)
1 2_loa 1, .
33. 2xz(lnx) 3% Inx + 7x +C 7. /2 7. % = 4?.?= 87712; 3
s lme-lec wmgsrc
1 5 Section 8.4, pp. 479-480
39,30 (2 + 12 - @+ PP AC LIVo+2+x+C 3.7/4 S w/6
41. —%—sin3xsinlx - %cosBxcos?.x +C . %sin—l(é) + ’V252_ r +C
2.an - 2) +
8. 307 GEnx -2+ C [, VB
45. 2V/xsinVx + 2cos Vx + C 27 7
-4 57 —3V3 Vy2 — 49 -
41. —3 9. —3 7| 2 ect(2) |+ € TR Ll
i 7 7 x
st i@+ Dtan'x -3+ C
2( ) 2 15.-V9-x*+C 17 %(x2+4)3/2—4\/x2+4+c
53. (a) m (b) 37 (0 57 (d) 2n + D7
. 2m(1 — In2 57. =2 b) 2 —9\/4 — w2
s : @ v =0 O 19, 24w L L simlx-VI-F+C
59.(a) 1 (b) (e — 2)m (c) -2-(e +9)
. i Ba3-3 s -—E—=+cC
@F=z@+Dy=3€-2 3 Vo1
Ay _ oo _ _ _1 _____\/1—-x2>5 VR
61. 2‘”(1 ) 63. u = x",dv = cos xdx 27. 5( 3 + C 29, 2tan”' 2x a2 + 1)-+-C
65. u=x"dv=e“dx TL xsin~!x + cos (sin"'x) + C 1 , ] .
- 7
73.xsec"x—ln|x+‘/x2—1|+c 75. Yes 31.§x2+'2‘1nl.x2—l|+c 33‘5(—\57——_1?) + C
77. (a) xsinh™'x — cosh(sinh™'x) + C
(b) xsinh'x — (1 + )2+ C 3. 19 —In(1 +V10) 37 7/6 39 sec”lx| +C
Section 8.3, pp. 474-475 A VEST+C Bim|VI+A+2|+C
1l =X oo
Lgsin2e+ € 3 —geoste® € 45.4sin"{£+ VaVa-x+C
1
5. ~cos?x —cosx + C
3 5 . 47.};sin-‘\f —%%V1—x(1—zx)+c
7 —cosx + =cos’x — geos’x + C
3 5 V2 -4 o x
. 1.4 Lo _las 49.y=2| —7 — —sec (3
9. 51nx——§sm-x+C ll.zsm x—-6-sm x+ €

3 3
13. %x + %sian +C  15.16/35 17. 3w 51 y = 5tan ‘(%) -3 53.37/4




