8. 1 Using Basic Integration Formulas

Techniques of
[ntegration

OVERVIEW The Fundamental Theorem tells us how to evaluate a definite integral 0
we have an antiderivative for the integrand function. However, finding antiderivatives
indefinite integrals) is not as straightforward as finding derivatives. We need to devel
some techniques to help us. Nevertheless, we note that it is not always possible to find
antiderivative expressed in terms of elementary functions.

In this chapter we study a number of important techniques which apply to fin i
integrals for specialized classes of functions such as trigonometric functions, products
certain functions, and rational functions. Since we cannot always find an antiderivati
we also develop some numerical methods for calculating definite integrals. Finally, ’
extend the idea of the definite integral to improper integrals, and we apply them to fin i
probabilities.
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Table 8.1 summarizes the forms of indefinite integrals for many of the functions we
studied so far, and the substitution method helps us use the table to evaluate more com
cated functions involving these basic ones. In this section we combine the Substitut
Rules (studied in Chapter 5) with algebraic methods and trigonometric identities to help
use Table 8.1. A more extensive Table of Integrals is given at the back of the book, and
discuss its use in Section 8.6.

Sometimes we have to rewrite an integral to match it to a standard form in Table §
We have used this procedure before, but here is another example. \

EXAMPLE 1 Evaluate the integral

; 2% = 3

9
3 Vx2 —3x + 1

dx.

Solution We rewrite the integral and apply the Substitution Rule for Definite Inte
presented in Section 5.6, to find

5 11 .
2% =3 dx = du w=x =3+ l.du = (2x — 3dx
3 Vi —3x + 1 | \/; w=1 whenx =23 u=11 whenx =3
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TABLE 8.1 Basic integration formulas 0

|

1. /kdx=k.x+C (any number k) 12. /tanxdx=lnlsccx|+C |
n+l X ‘!

2. /xndx= x+1+C (n#—1) 13. /cotxdx=lnlsmx| 4+ € \
n .

|

\

3. /%=1n1x\ e 14. /secxdx=ln|secx+tanx|+C ‘\‘
|

i /e‘dx= + C 15. /cscxdx=—1n]cscx+cotx\+€ ‘
5 a‘dx=ﬁ-+C @>0a#1) 16. /sinhxdx=coshx+C ‘
’ Ina ' - ‘

. = sinhx +
6. /sinxdxz—cosx+C 11 /coshxdx sinhx + C

7. /cosxdx=sinx+C 18, /Vagi_?= sin“(%) +C ‘

|
8. /seczxdx=tanx+C 2 /azd-i)—cx2=%tan‘l<%> "c \
9. /csczxdx=—cotx+ C 2. /X\/’f%z %Sec_] al * ¢ |
10. /secxtanxdx =secx + C 21. /7_61_;%____;= Sim_‘(é) +C (@>0 ‘
11. /cscxcotxdx =—cscx + C = /\/;_de__—:ai - COSh_1(§> +C (x>a>0 |

| SRS

EXAMPLE 2  Complete the square to evaluate

dx
/\/8)( - X

Solution 'We complete the square to simplify the denominator:
8x — x2 = —(x2 — 8x) = —(x* — 8x + 16 — 16)
= (2 —8x+16) + 16 =16 — (x — 4%
Then

/ dx =/ dx
V8x — x? 16 — (x — 4)?

a=4u=(&—4).

du
m dit = dx

=1 U
sin ‘(5> +C Table 8.1, Formula 18

sin~! (x—;—d') + C. i
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x —3
3x+2j3x2—7x

3 + 2
—Ox
—9x — 6

+6

EXAMPLE 3  Evaluate the integral

/(cos x sin 2x + sin x cos 2x) dx.

Solution Here we can replace the integrand with an equivalent trigonometric expressid

using the Sine Addition Formula to obtain a simple substitution:

/(cosxsin?.x + sin x cos 2x) dx = /(sin (o <1 2x)) dx

= fsin3xdx

|
- /‘3‘ sin u du w = A, du =3dx

-13-cos 3x + C. Table 8.1, Formula 6

In Section 5.5 we found the indefinite integral of the secant function by multiplying
and then integrating the equivalent result. ¥

by a fractional form identically equal to one,
can use that same procedure in other instances as well, which we illustrate next.

/4 dx
EXAMPLE 4 Find / —_—
0 1 —smnx

merator and denominator of the integrand by 1 + si

Solution We multiply the nu
by a form of the number one. This procedure transfon

which is simply a multiplication
the integral into one we can evaluate:

/4 w/4 .
dx  _ 1 1 Asinx o
1-sinx 1 —sinx 1+ si
0 sin x 0 sin x sin x

w/4 .
=/ 1+ S}nqx dx
o 1 T smix

_ /7/41 + sinxdx
0

cos? x

/4
" Use Table 8.1,
- '/(; (sec x + sec xtan X) dx Formulas 8 and 10

=/4

={tanx+secx} =(1+\/'—(0+1))=\/§.
0

EXAMPLE 5 Evaluate
3t — Tx
_/ 3x + 2 dx.

Solution The integrand is an improper fraction since the degree of the numeratof

greater than the degree of the denominator. To integrate it, we perform long divisiof "

obtain a quotient plus 2 remainder that is a proper fraction:

32— Tx _ . _ 6
3 ~rTA3THRET
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Therefore,

W =Tx, _ _ 6 2
/3x+2dx—/<x 3+———3x+2> - 3x+2In[3x+2/+C H

Reducing an improper fraction by long division (Example 5) does not always lead to
an expression we can integrate directly. We see what to do about that in Section 8.5.

EXAMPLE 6 Evaluate

3x + 2
V1 — x?

Solution We first separate the integrand to get

dx.

3x+2dx=3 xdx +2/ dx
V1 — x2 V1 — x? V1 - 22

In the first of these new integrals, we substitute

u=1-x% du = —2x dx, so xdx= —%du.

Then we obtain
—1/2)du
3 ﬂ__::;/(__/)‘:_i/u—uzdu
V1 — x? Vu 2
12
= —%1‘% + € ==3V1=2+C.

The second of the new integrals is a standard form,

dx .
2/—_‘—\/1——2 =2sin”'x + G,. Table 8.1. Formula 18
- X

Combining these results and renaming C, + G, as C gives

—3)—;\/——4_———2—';dx=—3\/1—x2+2sin"x+C. s
— P

The question of what to substitute for in an integrand is not always quite so clear.
Sometimes we simply proceed by trial-and-error, and if nothing works out, we then try
another method altogether. The next several sections of the text present some of these new
methods, but substitution works in the next example.

EXAMPLE 7 Evaluate

v

Solution We might try substituting for the term V/x, but we quickly realize the deriva-
tive factor 1/ \/x is missing from the integrand, so this substitution will not help. The
other possibility is to substitute for (1 + Vx), and it turns out this works:

/‘ dx /‘2(14 — 1)du =1+ Vi.du=——dr
—— = = 2V
(1+ Vax)? W _

dy =2Vxdu = 2(u — 1)du
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~2.1

B u+u2+c

1—2

z_—uZ—u+C

1 —2(1+ Va)
(1+ Vax)?

i 1 +2Va
(1+ Va)

When evaluating definite integrals, a property of the integrand may help us in cal

1ating the result.

EXAMPLE 8 Evaluate /

Solution No substitution or algebraic manipulation is clearly helpful here. But
observe that the interval of integration is the symmetric interval [—/2, /2 ]. Moreoy
the factor x3 is an odd function, and cos X is an even

/2
/ x cos xdx = 0.
-m/2

Therefore,

Exercisesfe M

Assorted Integrations

The integrals in Exercises 1-40 are in no particular order. Evaluate
each integral using any algebraic method or trigonometric identity
you think is appropriate, and then use a substitution to reduce it to a
standard form.

1 "
1 16 2. /

-
4 /1}'/3 i
" )4 cos® xtanx
dx
8 | ——=dx 6. /
1 - x i x = Vx

'e—colz
T ——dz
sin”©z

2
dx
+ 1

_dz 8dx
9 —— . |
/ez"'ez & X2 —-2xF2
0 3
4dx 42 =17
11./_11“?_”])2 12. _l2x+3dx

14. /csctsin 3tdt

13_ /___d_t_—
1] —sect

/4 .
15, / 1£sinf 4
0 cos*6

16, /_d_e__
V26 — 62

/2

x3 cos x dx.
-7/2

function, so their product is

Theorem 8, Section 5.6

Iny
17. | ——————dy
y + 4yln®y

dé
= /seco + tan 6

i
21,/ﬂ,1gﬁd,
2 +4

dt
20, | —
/t\/3+t2
” =
2. /x+..\/x 1

2

dx
x=1

/2
23. / V1 = cos 6 df 24, /(Sect+cott)2dt
0

6 dy
Vy(l + )

dy
28, | — 26.
/ Ve — 1
2dx

m [
29. / (csc x — sec x)(sinx + cos x) dx
30. /3 sinh (2‘2- + 1n5>dx
31. /\; x—l—“,‘%dx

0 Ty
33. /_11/1i —dy

zs./ X
(x—2)Vx*—4x+3 |

1
32. / V1 + x* sinxdx
=4

34. /r‘*f dz
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/ 7 dx 3% dx Evaluate
g [— 1 3 | - 1
(x— 1)Vx -2 = 43 (2x + 1)Vax + 4¢° / (1 + 3x%)edx.
20° — 76* + 78 6 38 db
] 20 — 5 * Jcosf — 1 48. Use the substitution ¥ = tan x to evaluate the integral
dx Vi _dx
'/1+e‘ 40-/1+,gd" 1+ sin?x’
. Hint: Use long division. Hint: Let u = x"2, 49, Use the substitution « = x* + 1 to evaluate the integral

heory and Examples
i ;yrea Find the area of the region bounded above by y = 2 cos x / xVx* + 1dx.
and below by y = secx, —7m/4 = x = /4.

Volume Find the volume of the solid generated by revolving
| the region in Exercise 41 about the X-axis.

B, Arc length Find the length of the curve y = In (cos x),
| 0=x= /3. can be evaluated with any of the following substitutions.
4 Arc length Find the length of the curve y In (sec x), a. u=1/(x+1)

0sx=m/4 _ . _
‘ b, u=((x— 1)/(x+ 1)for k=1, 1/2,1/3,-1/3, =2/3,
6. Centroid Find the centroid of the region bounded by the x-axis, and =1

" the curve y = sec x, and the lines x = —m/4, x = /4.

50. Using different substitutions Show that the integral

/ (@@ = Dix + 1) Pdx

But
[oreove

t is odd _ _
c. u=tan"'x d. u=tan"' Vx

tan~! ((x — 1)/2) £ u=cos'x
g u =cosh™'x

k. Centroid Find the centroid of the region bounded by the x-axis,
the curve y = csc x, and the lines x = 7 /6, x = 57 /6.

€. u

P, The functions y = ¢° and y = x’¢* do not have elementary anti- _ _
'~ derivatives, but y = (1 + 359 does. What is the value of the integral?

.2
D.Z4 Integration by Parts

Integration by parts is a technique for simplifying integrals of the form

/ f(x)g(x) dx.

It is useful when f can be differentiated repeatedly and g can be integrated repeatedly
without difficulty. The integrals

/xcosxdx and /xze‘dx

are such integrals because f(x) = x or f(x) = x? can be differentiated repeatedly to
become zero, and g(x) = cos x or g(x) = € can be integrated repeatedly without diffi-
culty. Integration by parts also applies to integrals like

/lnxdx and /e‘cosxdx.

In the first case, f(x) = In x is easy to differentiate and g(x) = 1 easily integrates to x. In
the second case, each part of the integrand appears again after repeated differentiation or
integration.

I

+
w

Product Rule in Integral Form

If f and g are differentiable functions of x, the Product Rule says that

41 0] = 080 + 008 ).
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29, —‘\7 ot Vi 3L —sech'x 33, ——R2—
“ T
2
3, secx| 41 2E ¢

43. 12sinh<§ - ln3> +C 45 T|e” + M| + C

51, In2

4. tanh( - %) +C 49, —2sechVi+ C >

$.2+m2 Soe-el  SL3/4 8. 2+mV2
61.1n(2/3) 6322 65 1n3

67. (a) sinh'(V3) (b) In(V3 +2)
69. (a) coth™(2) — coth™(5/4) (b) (%) In (l)

3
_ -1 12 =i [ 4
71. (a) —sech (13 + sech 5

b =) 1+ V1= (12/13)? e 1+ V1 — (4/5)7?
) = (12/13) ! @/9)

= —ln(%) +In(2) = In(4/3)
73. () 0 () 0
[mg
77. @) /7 ® 80V/5 ~ 178.89 ft/sec
6
81. 3

Section 7.4, pp. 452453
1. (a) Slower (b) Slower (c) Slower (d) Faster
(e) Slower (f) Slower (g) Same (h) Slower
3. (a) Same (b) Faster (c) Same (d) Same
(e) Slower (f) Faster (g) Slower (h) Same
5. (a) Same (b) Same (c) Same (d) Faster (e) Faster
(f) Same (g) Slower (h) Faster 7. d,a,c,b
9. (a) False (b) False (c) True (d) True (e) True
(f) True (g) False (h) True
13. When the degree of f is less than or equal to the degree of g.
18:. 1.1
21. (b) In (¢!7900000) = 17,000,000 < (¢!7X10%)!/1®
= 7 =~ 24,154,952.75
(c) x = 3.4306311 x 10"
(d) They cross at x =~ 3.4306311 X 10%,
23. (a) The algorithm that takes O(nlog; n) steps

(b) y

79. 2m

y = n(logy n)2

y =nlogyn

—> 1

1 1 A 1
20 40 60 80 100
25. It could take one million for a sequential search; at most 20
steps for a binary search.

Practice Exercises, pp. 453-454

1.

9.

15.
19.

21.

23.

29.

33.
35.
39.

—cos et + C 3. In8 5.2In2

3m7 1L 2(V2-1) 13 y=1—n‘("T§23

7. 15(1n(x -SSP +C

y=Ing— I3 17.y=1_;el

(a) Samerate (b) Samerate (c) Faster (d) Faster
(e) Samerate (f) Same rate

(a) True (b) False (c) False (d) True

(e) True (f) True

1/3 25. 1/em/sec 27. In5x — In3x = In(5/3)

12 3Ly= (tan“(x < ch

y? = sin”! 2tanx + C)
y=—2+1In(2 =€
19,035 years

3. y=4x-4Vx+1

Additional and Advanced Exercises, p. 455

L
3.

@1 b 7/2 (© =

= <t 11y . LT
tan~'x + tan~! (%) is a constant and the constant is 7- for

x>0 itis—g-forx< 0.

4
2k y=3
1F _y=mn_lx+mn—l(-l-)
—; —;. 5 4 *
_]—
DROrEL 2k
£ 2
- _Ind4 _
7. x= n?_ y=0
Chapter 8
Section 8.1, pp. 460461
1. In5 3. 2tanx — 2secx —x + C
5.sin'x+ V1-x+C Toae™ e+ G
9, tan~!(&f) + C 11. = 13. t +cott + csct + C
15. V2 17 L@ +am?y) + C

19.

23.
27.
31.
35.

39.
43.

47.

8
In|l +sin6| +C 2L 2% -1+ 2 tan™! (%) +C

2(V2-1) ~ 082843 25 sec”' (&) + C
sin! 2Inx) + C 29, In|sinx| + In|cos x| + C
7+ m8 33 (sin“y—vl—yz]fl=%-
=1 6 _ & 5
J-YT—~+C 37.—3'——+9+§ln|20—5|+c

-1
sec
2

41, 2V2 - In(3 + 2V2)

1n(2+\/§) 45. x = 0, §='ln—(5—+l—é—\/—§—)

49. B+ 12 (35 - 2) + C

x—mn(1+e&) +C

x* + C




