530 CHAPTER 6 APPLICATIONS OF INTEGRATION

71. (a) The radius of the barrel is the same at each end by symmetry, since the function $y=R-cx^2$ is even. Since the barrel is obtained by rotating the graph of the function y about the x-axis, this radius is equal to the value of y at $x=\frac{1}{2}h$, which is $R-c(\frac{1}{2}h)^2=R-d=r$.

(b) The barrel is symmetric about the y-axis, so its volume is twice the volume of that part of the barrel for x > 0. Also, the barrel is a volume of rotation, so

$$V = 2 \int_0^{h/2} \pi y^2 dx = 2\pi \int_0^{h/2} \left(R - cx^2 \right)^2 dx = 2\pi \left[R^2 x - \frac{2}{3} R c x^3 + \frac{1}{5} c^2 x^5 \right]_0^{h/2}$$
$$= 2\pi \left(\frac{1}{2} R^2 h - \frac{1}{12} R c h^3 + \frac{1}{166} c^2 h^5 \right)$$

Trying to make this look more like the expression we want, we rewrite it as $V = \frac{1}{3}\pi h \left[2R^2 + \left(R^2 - \frac{1}{2}Rch^2 + \frac{3}{80}c^2h^4\right)\right]$. But $R^2 - \frac{1}{2}Rch^2 + \frac{3}{80}c^2h^4 = \left(R - \frac{1}{4}ch^2\right)^2 - \frac{1}{40}c^2h^4 = (R - d)^2 - \frac{2}{5}\left(\frac{1}{4}ch^2\right)^2 = r^2 - \frac{2}{5}d^2$. Substituting this back into V, we see that $V = \frac{1}{3}\pi h \left(2R^2 + r^2 - \frac{2}{5}d^2\right)$, as required.

72. It suffices to consider the case where \Re is bounded by the curves y = f(x) and y = g(x) for $a \le x \le b$, where $g(x) \le f(x)$ for all x in [a, b], since other regions can be decomposed into subregions of this type. We are concerned with the volume obtained when \Re is rotated about the line y = -k, which is equal to

$$V_2 = \pi \int_a^b \left([f(x) + k]^2 - [g(x) + k]^2 \right) dx = \pi \int_a^b \left([f(x)]^2 - [g(x)]^2 \right) dx + 2\pi k \int_a^b \left[f(x) - g(x) \right] dx = V_1 + 2\pi k A$$

6.3 Volumes by Cylindrical Shells

If we were to use the "washer" method, we would first have to locate the local maximum point (a,b) of $y=x(x-1)^2$ using the methods of Chapter 4. Then we would have to solve the equation $y=x(x-1)^2$ for x in terms of y to obtain the functions $x=g_1(y)$ and $x=g_2(y)$ shown in the first figure. This step would be difficult because it involves the cubic formula. Finally we would find the volume using

$$V = \pi \int_0^b \left\{ [g_1(y)]^2 - [g_2(y)]^2 \right\} dy.$$

Using shells, we find that a typical approximating shell has radius x, so its circumference is $2\pi x$. Its height is y, that is, $x(x-1)^2$. So the total volume is

$$V = \int_0^1 2\pi x \left[x(x-1)^2 \right] dx = 2\pi \int_0^1 \left(x^4 - 2x^3 + x^2 \right) dx = 2\pi \left[\frac{x^5}{5} - 2\frac{x^4}{4} + \frac{x^9}{3} \right]_0^1 = \frac{\pi}{15}$$

3.
$$V = \int_{1}^{2} 2\pi x \cdot \frac{1}{x} dx = 2\pi \int_{1}^{2} 1 dx$$

= $2\pi \left[x \right]_{1}^{2} = 2\pi (2 - 1) = 2\pi$

4.
$$V = \int_0^1 2\pi x \cdot x^2 dx = 2\pi \int_0^1 x^3 dx$$

= $2\pi \left[\frac{1}{4}x^4\right]_0^1 = 2\pi \cdot \frac{1}{4} = \frac{\pi}{2}$

A typical cylindrical shell has circumference $2\pi x$ and height $\sin(x^2)$. $V = \int_0^{\sqrt{\pi}} 2\pi x \sin(x^2) dx$. Let $u = x^2$. Then du = 2x dx, so $V = \pi \int_0^\pi \sin u \, du = \pi [-\cos u]_0^\pi = \pi [1-(-1)] = 2\pi.$ For slicing, we would first have to locate the local maximum point (a,b) of $y=\sin(x^2)$ using the methods of Chapter 4. Then we would have to solve the equation $y = \sin(x^2)$ for x in terms of y to obtain the functions $x = g_1(y)$ and $x=g_2(y)$ shown in the second figure. Finally we would find the volume

using $V=\pi\int_0^b\left\{\left[g_1(y)\right]^2-\left[g_2(y)\right]^2\right\}dy.$ Using shells is definitely

preferable to slicing.

7. The curves intersect when $4(x-2)^2 = x^2 - 4x + 7 \Leftrightarrow 4x^2 - 16x + 16 = x^2 - 4x + 7 \Leftrightarrow 3x^2 - 12x + 9 = 0 \Leftrightarrow 3(x^2 - 4x + 3) = 0 \Leftrightarrow 3(x-1)(x-3) = 0, \text{ so } x = 1 \text{ or } 3.$ $V = 2\pi \int_1^3 \left\{ x \left[(x^2 - 4x + 7) - 4(x-2)^2 \right] \right\} dx = 2\pi \int_1^3 \left[x(x^2 - 4x + 7 - 4x^2 + 16x - 16) \right] dx$ $= 2\pi \int_1^3 \left[x(-3x^2 + 12x - 9) \right] dx = 2\pi (-3) \int_1^3 (x^3 - 4x^2 + 3x) dx = -6\pi \left[\frac{1}{4} x^4 - \frac{4}{3} x^3 + \frac{3}{2} x^2 \right]_1^3$ $= -6\pi \left[\left(\frac{81}{4} - 36 + \frac{27}{2} \right) - \left(\frac{1}{4} - \frac{4}{3} + \frac{3}{2} \right) \right] = -6\pi \left(20 - 36 + 12 + \frac{4}{3} \right) = -6\pi \left(-\frac{8}{3} \right) = 16\pi$

8. By slicing:

$$V = \int_0^1 \pi \left[\left(\sqrt{y} \right)^2 - (y^2)^2 \right] dy = \pi \int_0^1 (y - y^4) dy$$
$$= \pi \left[\frac{1}{2} y^2 - \frac{1}{5} y^5 \right]_0^1 = \pi \left(\frac{1}{2} - \frac{1}{5} \right) = \frac{3}{10} \pi$$

By cylindrical shells:

$$V = \int_0^1 2\pi x \left(\sqrt{x} - x^2\right) dx = 2\pi \int_0^1 (x^{3/2} - x^3) dx = 2\pi \left[\frac{2}{5}x^{5/2} - \frac{1}{4}x^4\right]_0^1$$
$$= 2\pi \left(\frac{2}{5} - \frac{1}{4}\right) = 2\pi \left(\frac{3}{20}\right) = \frac{3}{10}\pi$$

9. $V = \int_1^2 2\pi y (1+y^2) dy = 2\pi \int_1^2 (y+y^3) dy = 2\pi \left[\frac{1}{2}y^2 + \frac{1}{4}y^4\right]_1^2$ = $2\pi \left[(2+4) - \left(\frac{1}{2} + \frac{1}{4}\right)\right] = 2\pi \left(\frac{21}{4}\right) = \frac{21}{2}\pi$

11. $V = 2\pi \int_0^8 \left[y(\sqrt[3]{y} - 0) \right] dy$ $= 2\pi \int_0^8 y^{4/3} dy = 2\pi \left[\frac{3}{7} y^{7/3} \right]_0^8$ $= \frac{6\pi}{7} (8^{7/3}) = \frac{6\pi}{7} (2^7) = \frac{768}{7} \pi$

12. $V = 2\pi \int_0^4 \left[y(4y^2 - y^3) \right] dy$ $= 2\pi \int_0^4 (4y^3 - y^4) dy$ $= 2\pi \left[y^4 - \frac{1}{5}y^5 \right]_0^4 = 2\pi \left(256 - \frac{1024}{5} \right)$ $= 2\pi \left(\frac{256}{5} \right) = \frac{512}{5}\pi$

13. The height of the shell is $2 - [1 + (y - 2)^2] = 1 - (y - 2)^2 = 1 - (y^2 - 4y + 4) = -y^2 + 4y - 3$.

$$V = 2\pi \int_{1}^{3} y(-y^{2} + 4y - 3) dy$$

$$= 2\pi \int_{1}^{3} (-y^{3} + 4y^{2} - 3y) dy$$

$$= 2\pi \left[-\frac{1}{4}y^{4} + \frac{4}{3}y^{3} - \frac{3}{2}y^{2} \right]_{1}^{3}$$

$$= 2\pi \left[\left(-\frac{81}{4} + 36 - \frac{27}{2} \right) - \left(-\frac{1}{4} + \frac{4}{3} - \frac{3}{2} \right) \right]$$

$$= 2\pi \left(\frac{8}{3} \right) = \frac{16}{3}\pi$$

14.
$$V = \int_0^3 2\pi y \left[4 - (y - 1)^2 - (3 - y) \right] dy$$

 $= 2\pi \int_0^3 y (-y^2 + 3y) dy$
 $= 2\pi \int_0^3 (-y^3 + 3y^2) dy = 2\pi \left[-\frac{1}{4} y^4 + y^3 \right]_0^3$
 $= 2\pi \left(-\frac{81}{4} + 27 \right) = 2\pi \left(\frac{27}{4} \right) = \frac{27}{2}\pi$

15. The shell has radius 2-x, circumference $2\pi(2-x)$, and height x^4 .

$$V = \int_0^1 2\pi (2 - x) x^4 dx$$

$$= 2\pi \int_0^1 (2x^4 - x^5) dx$$

$$= 2\pi \left[\frac{2}{5} x^5 - \frac{1}{6} x^6 \right]_0^1$$

$$= 2\pi \left[\left(\frac{2}{5} - \frac{1}{6} \right) - 0 \right] = 2\pi \left(\frac{7}{30} \right) = \frac{7}{15} \pi$$

16. The shell has radius x - (-1) = x + 1, circumference $2\pi(x + 1)$, and height \sqrt{x} .

$$V = \int_0^1 2\pi (x+1)\sqrt{x} \, dx$$

$$= 2\pi \int_0^1 (x^{3/2} + x^{1/2}) \, dx$$

$$= 2\pi \left[\frac{2}{5} x^{5/2} + \frac{2}{3} x^{3/2} \right]_0^1$$

$$= 2\pi \left[\left(\frac{2}{5} + \frac{2}{3} \right) - 0 \right] = 2\pi \left(\frac{16}{15} \right) = \frac{32}{15}\pi$$

17. The shell has radius x-1, circumference $2\pi(x-1)$, and height $(4x-x^2)-3=-x^2+4x-3$.

18. The shell has radius 1-x, circumference $2\pi(1-x)$, and height $(2-x^2)-x^2=2-2x^2$.

$$V = \int_{-1}^{1} 2\pi (1-x)(2-2x^{2}) dx$$

$$= 2\pi (2) \int_{-1}^{1} (1-x)(1-x^{2}) dx$$

$$= 4\pi \int_{-1}^{1} (1-x-x^{2}+x^{3}) dx$$

$$= 4\pi (2) \int_{0}^{1} (1-x^{2}) dx \quad \text{[by Theorem 5.5.7]}$$

$$= 8\pi \left[x - \frac{1}{3}x^{3}\right]_{0}^{1} = 8\pi \left[\left(1 - \frac{1}{3}\right) - 0\right] = 8\pi \left(\frac{2}{3}\right) = \frac{16}{3}\pi$$

$$V = \int_0^1 2\pi (y+1) \left(\sqrt{y} - y^2\right) dy$$

$$= 2\pi \int_0^1 (y^{3/2} + y^{1/2} - y^3 - y^2) dy$$

$$= 2\pi \left[\frac{2}{5}y^{5/2} + \frac{2}{3}y^{3/2} - \frac{1}{4}y^4 - \frac{1}{3}y^3\right]_0^1$$

$$= 2\pi \left(\frac{2}{5} + \frac{2}{3} - \frac{1}{4} - \frac{1}{3}\right) = 2\pi \left(\frac{29}{60}\right) = \frac{29}{30}\pi$$

21.
$$V = \int_1^2 2\pi x \ln x \, dx$$

22.
$$V = \int_0^3 2\pi (7-x)[(4x-x^2)-x] dx$$

23.
$$V = \int_0^1 2\pi [x - (-1)] \left(\sin \frac{\pi}{2} x - x^4\right) dx$$

24.
$$V = \int_0^2 2\pi (2-x) \left(\frac{1}{1+x^2}\right) dx$$

25.
$$V = \int_0^{\pi} 2\pi (4 - y) \sqrt{\sin y} \, dy$$

26.
$$V = \int_{-3}^{3} 2\pi (5 - y) \left(4 - \sqrt{y^2 + 7} \right) dy$$

27.
$$V = \int_0^1 2\pi x \sqrt{1+x^3} dx$$
. Let $f(x) = x\sqrt{1+x^3}$.

Then the Midpoint Rule with n=5 gives

$$\int_0^1 f(x) dx \approx \frac{1-0}{5} \left[f(0.1) + f(0.3) + f(0.5) + f(0.7) + f(0.9) \right]$$

$$\approx 0.2(2.9290)$$

Multiplying by 2π gives $V \approx 3.68$.

28. $\Delta x = \frac{12-2}{5} = 2$, n = 5 and $x_i^* = 2 + (2i+1)$, where i = 0, 1, 2, 3, 4. The values of f(x) are taken directly from the diagram.

$$V = \int_2^{12} 2\pi x f(x) dx \approx 2\pi [3f(3) + 5f(5) + 7f(7) + 9f(9) + 11f(11)] \cdot 2$$

$$\approx 2\pi [3(2) + 5(4) + 7(4) + 9(2) + 11(1)] = 332\pi$$

29. $\int_0^3 2\pi x^5 dx = 2\pi \int_0^3 x(x^4) dx$. The solid is obtained by rotating the region $0 \le y \le x^4$, $0 \le x \le 3$ about the y-axis using cylindrical shells.

30. $2\pi \int_0^2 \frac{y}{1+y^2} dy = 2\pi \int_0^2 y\left(\frac{1}{1+y^2}\right) dy$. The solid is obtained by rotating the region $0 \le x \le \frac{1}{1+y^2}$, $0 \le y \le 2$ about the x-axis using cylindrical shells.

31. $\int_0^1 2\pi (3-y)(1-y^2) dy$. The solid is obtained by rotating the region bounded by (i) $x=1-y^2$, x=0, and y=0 or (ii) $x=y^2$, x=1, and y=0 about the line y=3 using cylindrical shells.

32. $\int_0^{\pi/4} 2\pi (\pi - x)(\cos x - \sin x) dx$. The solid is obtained by rotating the region bounded by (i) $0 \le y \le \cos x - \sin x$, $0 \le x \le \frac{\pi}{4}$ or (ii) $\sin x \le y \le \cos x$, $0 \le x \le \frac{\pi}{4}$ about the line $x = \pi$ using cylindrical shells.

From the graph, the curves intersect at x=0 and $x=a\approx 0.56$, with $\sqrt{x}+1>e^x$ on the interval (0,a). So the volume of the solid obtained by rotating the region about the y-axis is

$$V = 2\pi \int_0^a x \left[\left(\sqrt{x} + 1 \right) - e^x \right] dx \approx 0.13.$$