55| THE SUBSTITUTION RULE

™

Because of the Fundamental Theorem, it’s important to be able to find antiderivatives. BY
our antidifferentiation formulas don’t tell us how to evaluate integrals such as

1] 2x4/1 + x2 dx
To find this integral we use the problem-solving strategy of introducing something ext

Here the “something extra” is a new variable; we change from the variable x to a new vd
able u. Suppose that we let u be the quantity under the root sign in (1), u =1+ x". TH

» Differentials were defined in Section 3.10 the differential of u is du = 2x dx. Notice that if the dx in the notation for an integral w8
If u = £(x). then to be interpreted as a differential, then the differential 2x dx would occur in (1) and§
du = f'(x) dx formally, without justifying our calculation, we could write

i r —_— r — Y

" (2] ‘ 2x/1 + x2dx= |1 +x*2x dx = ’ Ju du

l“ :?u;’:-‘f—C:;(.\‘:ﬁ‘- 1‘)3’:‘7 C

“ But now we can check that we have the correct answer by using the Chain Rule to diff

i

e entiate the final function of Equation 2:

d 202, 1924 23022 L )2
] :{-;[g(x' + 12+ C) =33+ )2 2x = 2x/x* + ]

In general, this method works whenever we have an integral that we can write in’
form _[f(g(x))g'(x) dx. Observe that if F' = f, then

E B [ Fg(x))g'(x) dx = Flg(x) + C




I

Bheck the answer by differentiating it

I\
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because, by the Chain Rule,

R T

d
[F(g(x))] = F'(g(x))g'(x)

X

If we make the “change of variable” or “substitution” u = g(x), then from Equation 3
we have

.

!

3

i

[ F(g(x))g'(x) dx = F(g(x)) + € = Fw) + C = | F(u) du ;

or, writing F' = f, we get
| f(g(x))g'(x) dx = ‘f(u) du i

Thus we have proved the following rule. ]
— i

[4] THE SUBSTITUTION RULE If u = g(x) is a differentiable function whose range u

is an interval / and f is continuous on /, then ]

[ £(g()g'(x) dx = | flu) du 5

i

Notice that the Substitution Rule for integration was proved using the Chain Rule for 1
differentiation. Notice also that if u = g(x), then du = g'(x) dx, so a way to remember the 1
Substitution Rule is to think of dx and du in (4) as differentials. i
Thus the Substitution Rule says: It is permissible to operate with dx and du after i
integral signs as if they were differentials. [
!

4

EXAMPLE | Find [ x*cos(x* + 2)dx. i
: |

e

SOLUTION We make the substitution u = x* + 2 because its differential is du = 4x” dx, ~X'
which, apart from the constant factor 4. occurs in the integral. Thus, using x dx = du/4 :
and the Substitution Rule, we have 3
{

‘ x cos(x* + 2)dx = ’ cosu*3du =3 ‘ cos u du :

" |

=zsinu + C i

=3'sin(x"'+2)+C ;

Notice that at the final stage we had to return to the original variable x. O : {
The idea behind the Substitution Rule is to replace a relatively complicated integral M

by a simpler integral. This is accomplished by changing from the original variable x to
a new variable u that is a function of x. Thus, in Example 1, we replaced the integral it
| x?cos(x* + 2) dx by the simpler integral § [ cos u du. :

The main challenge in using the Substitution Rule is to think of an appropriate substi- i
tution. You should try to choose  to be some function in the integrand whose differential i
also occurs (except for a constant factor). This was the case in Example 1. If that is not
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possible, try choosing u to be some complicated part of the integrand (perhaps the ini
function in a composite function). Finding the right substitution is a bit of an art. It’s
unusual to guess wrong; if your first guess doesn’t work, try another substitution.

EXAMPLE 2 Evaluate | +/2x + 1 dx.

SOLUTION | Let u = 2x + 1. Then du = 2dx, so dx = du/2. Thus the Substitution Rulg

gives
—du :
V2x + ldx= | Ju — = u''"du

1 w? J

=—+—+C=3u"+C
2 3/2 ~
2 3/2
1 /

=:2x+ 1P?+C

SOLUTION 2 Another possible substitution is u = +/2x + 1. Then

dx —
du = ————— SO dx =+2x + 1du= udu
sz.\' + 1

(Or observe that u® = 2x + 1, so 2udu = 2 dx.) Therefore

;[ ‘ V2x + ldx = 1 u-udu = ‘ u’ du

.y )

i - u” L, , .

- =T*C:§(2\+1)’+C

J

b 1 -

B ; x

! 7 EXAMPLE 3 Find | ——=dx.

; J VT —dx?

) 1 5

A . — SOLUTION Let u = 1 — 4x2 Then du = —8xdx, so xdx = —du and

‘of

\.'I ‘ .‘——x'd\'=—1 ‘La’u=—' (w12 dy

s [ J 1 —4xr °J Ju "

. ‘

’ o= fid | = V) +C=—T-&F+ C
"'] . L )
=1 The answer to Example 3 could be checked by differentiation, but instead let’s checi
! FIGURE | it with a graph. In Figure 1 we have used a computer to graph both the integran
4 o " f(x) = x/4/1 — 4x? and its indefinite integral g(x) = —i+/1 — 4x? (we take the cas
il fx)= NS C = 0). Notice that g(x) decreases when f(x) is negative, increases when f(x) is positive
, “ P and has its minihum value when f(x) = 0. So it seems reasonable, from the graphical evi
i gx)= | flydy=—3v1-4x* dence, that g is an antiderivative of f.

i

o EXAMPLE 4 Calculate | ™ dx.
o "
SOLUTION If we let u = 5x, then du = 5dx, so dx = L du. Therefore

i [ s 1 [ Lu | sy
. *e"dx=; e'du=ze'"+C=3e"+C d
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" * a4 .5
EXAMPLE 5 Find | /1 + x? x%dx.

SOLUTION An appropriate substitution becomes more obvious if we factor x’ as x* + x. Let
u =1+ x% Then du = 2xdx, so xdx = du/2. Also x* = u — 1,50 x* = (u — 1)%

‘V/l + x2 x3dx = ‘ 31 + x* xtxdx

- , du C o~ s
= ’ JVu (u— l)‘% =3 ‘ Ju (u* = 2u + 1)du

1 [ 5/2 3/2 /2
5$(u"—2u"'v—u *

[

I EXAMPLE 6 Calculate ‘ tan x dx.

SOLUTION First we write tangent in terms of sine and cosine:

r sin x

( tan x dx = dx
J J cos x
This suggests that we should substitute u = cos x, since then du = —sin x dx and so
sin x dx = —du:
r ~osin x » du
tan xdx = ‘ dx==| —
. J cos x Jou
= —In|u| + C= —In|cosx| + C O

Since —In|cos x| = In(|cos x|™') = In(1/|cos x|) = In|sec x|, the result of Example
6 can also be written as

[5] ‘ tan xdx = In|sec x| + C

DEFINITE INTEGRALS

When evaluating a definite integral by substitution, two methods are possible. One method
is to evaluate the indefinite integral first and then use the Fundamental Theorem. For
instance, using the result of Example 2, we have

[ VErF Tdr= [ Vax ¥ Taafy =3(2x + 17,

={OP” - 1P =3271 - 1) =3

Another method, which is usually preferable, is to change the limits of integration when
the variable is changed.
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& This rule says that when using a substitution
in a definite integral, we must put everything in
terms of the new variable u, not only x and dx
but also the limits of integration. The new limits
of integration are the values of u that correspond
tox=aandx = b.

[E THE SUBSTITUTION RULE FOR DEFINITE INTEGRALS Ifg' 1S continuous on
[a, b] and f is continuous on the range of u = g(x), then

J‘t,bf(g(x))g’(x) dx = |

Jgla)

glb

)f(u) du

PROOF Let F be an antiderivative of f. Then, by (3), F(g(x)) is an antiderivative of
f(g(x))g'(x), so by Part 2 of the Fundamental Theorem, we have

| Flg)gx) dx = F(g(x)]. = F(g(b)) — F(g(a))

But, applying FTC2 a second time, we also have

(™ fw du = Fw)ly = Flg(b)) = F(g(@)

gla) gla)

EXAMPLE 7 Evaluate | v2x + 1 dx using (6).
JO

SOLUTION Using the substitution from Solution 1 of Example 2, we have u = 2x + 1 and

dx = du/2. To find the new limits of integration we note that B Si
Exan
whenx =0, u=2(0) + 1 =1 and whenx =4, u=24)+1=9 I‘,l?pn
‘ * Figu!
3
g — "9 — n 219 |
Therefore V2x + ldx = I Vudu=5- f\u"-]l
JO J1
s The geometric interpretation of Example 7 is — _1(93/2 _ 13/2) — 2
shown in Figure 2. The substitution u = 2x + | . ’ )
stretches the interval [0, 4] by a factor of 2 and ) ) o ‘ ]
translates it to the right by 1 unit. The Substitu- Observe that when using (6) we do not return to the variable x after integrating. We
tion Rule shows that the two areas are equal. simply evaluate the expression in u between the appropriate values of u. a '
7w ‘ —‘ V£ ‘ ‘ ‘ =
| [ | [
| | | |
3 = — 3 T i
y=v2x ~l/ ‘ ‘ ‘ ; ‘ !
2 ] — 2 f | Ju- I
| ‘ y="7 : ‘.‘
| ™ | -
1 { 1 | i ‘ | } — ;
\ t
‘ L ‘ | | |
0 4 X 0 1 9 u R
1

FIGURE 2

@ The integral given in Example 8 is an
abbreviation for

"2 dx 4
EXAMPLE 8 Evaluate Ql B _
o - X)"

SOLUTION Letu = 3 — Sx. Then du = —5dx, so dx = —du/5. When x = 1, u =




. Smce the function f(x

fqure 3.

= (Inx)/xin
kample 9 is positive 1‘0( x > |, the integral
resems the area of the shaded region in

FIGURE 3
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when x = 2, u = —7. Thus

r dx _ _l ‘»il_u_
Ji (3 = 5x)° 5J-2 u?
ool
5 ul_, Suf,
1(1 1) 1
_ — —_—— + _— —_—
s\7772) 14
fe 1IN X
2 EXAMPLE 9 Calculate 1 —dx.
hox

SOLUTION We let u = In x because its differential du = dx/x occurs in the integral. When

x=1,u=lnl=0:when.\'=e.u:lne= 1. Thus

|
‘Ilnrd\—\ udu———-li—i\ =:1"—

SYMMETRY

The next theorem uses the Substitution Rule for Definite Integrals (6) to simplify the cal-

culation of integrals of functions that possess symmetry properties.

ﬁ INTEGRALS OF SYMMETRIC FUNCTIONS Suppose f is continuous on [—a, a].

(a) If f is even [f(—x) = f(x)], then [2, fx)dx=2 [ f(x) dx

) 1f £ is odd [f(—x) = —f(x)], then [, f(x)dx =0.

PROOF We split the integral in two:

8 ﬁﬂﬂm=ﬂfmw+ﬁﬂﬂms—rﬂﬂm+ﬁﬂﬂm

JO

In the first integral on the far right side we make the substitution ¥ = —x. Then
du = —dx and when x = —a, u = a. Therefore

[T f dx = = [ fu)(du) = |7 () d

b azad mman . Foigd

i e Y
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and so Equation 8 becomes
9 [ f@dx= [ f-wdu+ | fdx

(a) If f is even, then f(—u) = f(u) so Equation 9 gives

Ca

[* feydx = [ fdu + [} ) dx =2 [ () d

Jo©

(b) If £ is odd, then f(—u) = —f(u) and so Equation 9 gives

[ f(dx = = [ flw) du + | f@)dx =0 :

Jv=a
j y Theorem 7 is illustrated by Figure 4. For the case where f is positive and even, part (a
.., I says that the area under y = f(x) from —a to a is twice the area from 0 to a because@
symmetry. Recall that an integral .\‘(,,) f(x) dx can be expressed as the area above the x-ax
and below y = f(x) minus the area below the axis and above the curve. Thus part (b) saj
the integral is O because the areas cancel.

3 —a Ol a x

L (a) f even, ‘7 flx)dx=2 |ﬁ:f(,\-)d.\- EXAMPLE 10 Since f(x) = x® + 1 satisfies f(—x) = f(x), itis even and so
¥A I” (x*+ Ddx=2| (x°+ 1)dx

i J=2 JO

! —a ()\ - = 2[%,\'7 + x]f, =22 +2)=7F

- a
A M 1
E ¢ ' - x*) satisfies f(—x) = —f(x), it is odd

EXAMPLE 11 Since f(x) = (tan x)/(1 + x* +

-t (b) f odd, ‘, flx)dx=0 and so
- FIGURE 4 : 5 o dx=0
. Jar 1+ xP+xt
g
‘- 5.5 | EXERCISES
g 1-6 Evaluate the integral by making the given substitution. 7-46 Evaluate the indefinite integral.
';‘ 1. ‘ e *dx, u= —x 7. ‘ x sin(x?) dx 8. ’ x3(x* + 5)7 dx
: J J 3
' 2 [£@+x)dy u=2+x 9. [ (Bx—2™dx 10. [ (3r +2)**de
3] ‘ «\‘1\/\'1—4“_1 dx, u=x>+1 ( N e i X
X ' Il. x + 1)/2x + x* dx v | S GX
4 , (x )v/2x + x? dx 12 ’ T 1) dx
: . [—= I — 6t i
o . T (A U= = ax R
B J(1-6n! 13 14. *sin(e") dx
i 13, | 5 _ 3x 4 ' e*sin(e*) dx
' 5. ’ cos’6 sinfdf, u = cosb - .
i v 15. ‘ sin 7t dt 16. ' ~ dx
1 21/%) J J 2+ 1
r sec”
6. ' ——x'—d.\’. u=1/x v g+ bx?

X 17. | 18. [ sec 26 tan 2046

J 3ax + bx?




