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We represented f as the sum of two geometric series; the first converges for z € (—%, %) and the second converges for

(—1,1). Thus, the sum converges forz € (—3,1) = I.
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In the last step, note that we decreased the initial value of the summation variable n by 1, and then increased each

occurrence of 7 in the term by 1 [also note that (—1)" 2 = (—1)"].
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To write the power series with ™ rather than "2, we will decrease each occurrence of n in the term by 2 and increase

the initial value of the summation variable by 2. This gives us é S (=1)"(n)(n — 1)a™ with R = 1.
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Putting = = 0, we get C' = In 5. The series converges for [z/5| <1 < |z| < 5,50 R =05.




