Challenging but important 65, 66, 68, 69, 70, 73a.

- 65. The series $1-1+1-1+1-1+\cdots$ diverges (geometric series with r=-1) so we cannot say that $0=1-1+1-1+1-1+\cdots$
- 66. If $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n\to\infty} a_n = 0$ by Theorem 6, so $\lim_{n\to\infty} \frac{1}{a_n} \neq 0$, and so $\sum_{n=1}^{\infty} \frac{1}{a_n}$ is divergent by the Test for Divergence.
- 67. $\sum_{n=1}^{\infty} ca_n = \lim_{n \to \infty} \sum_{i=1}^{n} ca_i = \lim_{n \to \infty} c \sum_{i=1}^{n} a_i = c \lim_{n \to \infty} \sum_{i=1}^{n} a_i = c \sum_{n=1}^{\infty} a_n$, which exists by hypothesis.
- 68. If $\sum ca_n$ were convergent, then $\sum (1/c)(ca_n) = \sum a_n$ would be also, by Theorem 8. But this is not the case, so $\sum ca_n$ must diverge.
- 69. Suppose on the contrary that $\sum (a_n + b_n)$ converges. Then $\sum (a_n + b_n)$ and $\sum a_n$ are convergent series. So by Theorem 8, $\sum [(a_n + b_n) a_n]$ would also be convergent. But $\sum [(a_n + b_n) a_n] = \sum b_n$, a contradiction, since $\sum b_n$ is given to be divergent.
- 70. No. For example, take $\sum a_n = \sum n$ and $\sum b_n = \sum (-n)$, which both diverge, yet $\sum (a_n + b_n) = \sum 0$, which converges with sum 0.
- 71. The partial sums $\{s_n\}$ form an increasing sequence, since $s_n s_{n-1} = a_n > 0$ for all n. Also, the sequence $\{s_n\}$ is bounded since $s_n \le 1000$ for all n. So by the Monotonic Sequence Theorem, the sequence of partial sums converges, that is, the series $\sum a_n$ is convergent.
 - 73. (a) At the first step, only the interval $(\frac{1}{3}, \frac{2}{3})$ (length $\frac{1}{3}$) is removed. At the second step, we remove the intervals $(\frac{1}{9}, \frac{2}{9})$ and $(\frac{7}{9}, \frac{8}{9})$, which have a total length of $2 \cdot (\frac{1}{3})^2$. At the third step, we remove 2^2 intervals, each of length $(\frac{1}{3})^3$. In general, at the nth step we remove 2^{n-1} intervals, each of length $(\frac{1}{3})^n$, for a length of $2^{n-1} \cdot (\frac{1}{3})^n = \frac{1}{3}(\frac{2}{3})^{n-1}$. Thus, the total length of all removed intervals is $\sum_{n=1}^{\infty} \frac{1}{3}(\frac{2}{3})^{n-1} = \frac{1/3}{1-2/3} = 1$ [geometric series with $a = \frac{1}{3}$ and $r = \frac{2}{3}$]. Notice that at the nth step, the leftmost interval that is removed is $((\frac{1}{3})^n, (\frac{2}{3})^n)$, so we never remove 0, and 0 is in the Cantor set. Also, the rightmost interval removed is $(1 (\frac{2}{3})^n, 1 (\frac{1}{3})^n)$, so 1 is never removed. Some other numbers in the Cantor set are $\frac{1}{3}, \frac{2}{3}, \frac{1}{9}, \frac{2}{9}, \frac{7}{9}$, and $\frac{8}{9}$.
 - (b) The area removed at the first step is $\frac{1}{9}$; at the second step, $8 \cdot \left(\frac{1}{9}\right)^2$; at the third step, $(8)^2 \cdot \left(\frac{1}{9}\right)^3$. In general, the area removed at the *n*th step is $(8)^{n-1} \left(\frac{1}{9}\right)^n = \frac{1}{9} \left(\frac{8}{9}\right)^{n-1}$, so the total area of all removed squares is $\sum_{n=1}^{\infty} \frac{1}{9} \left(\frac{8}{9}\right)^{n-1} = \frac{1/9}{1-8/9} = 1.$