1. (a) $(2, \frac{\pi}{3})$

By adding 2π to $\frac{\pi}{3}$, we obtain the point $\left(2,\frac{7\pi}{3}\right)$. The direction opposite $\frac{\pi}{3}$ is $\frac{4\pi}{3}$, so $\left(-2,\frac{4\pi}{3}\right)$ is a point that satisfies the r<0 requirement.

(b) $(1, -\frac{3\pi}{4})$

r > 0: $\left(1, -\frac{3\pi}{4} + 2\pi\right) = \left(1, \frac{5\pi}{4}\right)$ r < 0: $\left(-1, -\frac{3\pi}{4} + \pi\right) = \left(-1, \frac{\pi}{4}\right)$

(c) $\left(-1, \frac{\pi}{2}\right)$

 $r > 0: (-(-1), \frac{\pi}{2} + \pi) = (1, \frac{3\pi}{2})$

$$r < 0: \left(-1, \frac{\pi}{2} + 2\pi\right) = \left(-1, \frac{5\pi}{2}\right)$$

2. (a) $(1, \frac{7\pi}{4})$

r > 0: $\left(1, \frac{7\pi}{4} - 2\pi\right) = \left(1, -\frac{\pi}{4}\right)$

$$r < 0: \left(-1, \frac{7\pi}{4} - \pi\right) = \left(-1, \frac{3\pi}{4}\right)$$

(b) $\left(-3, \frac{\pi}{6}\right)$

r > 0: $\left(-(-3), \frac{\pi}{6} + \pi\right) = \left(3, \frac{7\pi}{6}\right)$

$$r < 0: \left(-3, \frac{\pi}{6} + 2\pi\right) = \left(-3, \frac{13\pi}{6}\right)$$

$$\theta = -1 \text{ radian} \approx -57.3^{\circ}$$

$$r > 0$$
: $(1, -1 + 2\pi)$

$$r < 0: (-1, -1 + \pi)$$

$$x = 1\cos \pi = 1(-1) = -1$$
 and

$$y = 1 \sin \pi = 1(0) = 0$$
 give us

the Cartesian coordinates (-1,0).

$$x = 2\cos\left(-\frac{2\pi}{3}\right) = 2\left(-\frac{1}{2}\right) = -1$$
 and

$$y = 2\sin(-\frac{2\pi}{3}) = 2(-\frac{\sqrt{3}}{2}) = -\sqrt{3}$$

give us $\left(-1, -\sqrt{3}\right)$.

$$x = -2\cos\frac{3\pi}{4} = -2\left(-\frac{\sqrt{2}}{2}\right) = \sqrt{2}$$
 and

$$y = -2\sin\frac{3\pi}{4} = -2\left(\frac{\sqrt{2}}{2}\right) = -\sqrt{2}$$

gives us $(\sqrt{2}, -\sqrt{2})$.

$$x = -\sqrt{2}\cos\frac{5\pi}{4} = -\sqrt{2}\left(-\frac{\sqrt{2}}{2}\right) = 1$$
 and

$$y = -\sqrt{2}\sin\frac{5\pi}{4} = -\sqrt{2}\left(-\frac{\sqrt{2}}{2}\right) = 1$$

gives us (1,1).

$$x = 1\cos\frac{5\pi}{2} = 1(0) = 0$$
 and

$$y = 1\sin\frac{5\pi}{2} = 1(1) = 1$$

gives us (0, 1).

- 5. (a) x=2 and $y=-2 \Rightarrow r=\sqrt{2^2+(-2)^2}=2\sqrt{2}$ and $\theta=\tan^{-1}\left(\frac{-2}{2}\right)=-\frac{\pi}{4}$. Since (2,-2) is in the fourth quadrant, the polar coordinates are (i) $\left(2\sqrt{2},\frac{7\pi}{4}\right)$ and (ii) $\left(-2\sqrt{2},\frac{3\pi}{4}\right)$.
 - (b) x=-1 and $y=\sqrt{3} \Rightarrow r=\sqrt{(-1)^2+\left(\sqrt{3}\right)^2}=2$ and $\theta=\tan^{-1}\left(\frac{\sqrt{3}}{-1}\right)=\frac{2\pi}{3}$. Since $\left(-1,\sqrt{3}\right)$ is in the second quadrant, the polar coordinates are (i) $\left(2,\frac{2\pi}{3}\right)$ and (ii) $\left(-2,\frac{5\pi}{3}\right)$.
- **6.** (a) $x = 3\sqrt{3}$ and $y = 3 \implies r = \sqrt{\left(3\sqrt{3}\right)^2 + 3^2} = \sqrt{27 + 9} = 6$ and $\theta = \tan^{-1}\left(\frac{3}{3\sqrt{3}}\right) = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$. Since $\left(3\sqrt{3},3\right)$ is in the first quadrant, the polar coordinates are (i) $\left(6,\frac{\pi}{6}\right)$ and (ii) $\left(-6,\frac{7\pi}{6}\right)$.
 - (b) x=1 and $y=-2 \Rightarrow r=\sqrt{1^2+(-2)^2}=\sqrt{5}$ and $\theta=\tan^{-1}\left(\frac{-2}{1}\right)=-\tan^{-1}2$. Since (1,-2) is in the fourth quadrant, the polar coordinates are (i) $\left(\sqrt{5},2\pi-\tan^{-1}2\right)$ and (ii) $\left(-\sqrt{5},\pi-\tan^{-1}2\right)$.
- 7. The curves r=1 and r=2 represent circles with center O and radii 1 and 2. The region in the plane satisfying $1 \le r \le 2$ consists of both circles and the shaded region between them in the figure.

9. The region satisfying $0 \le r < 4$ and $-\pi/2 \le \theta < \pi/6$ does not include the circle r = 4 nor the line $\theta = \frac{\pi}{6}$.

10. $2 < r \le 5$, $3\pi/4 < \theta < 5\pi/4$

8. $r \ge 0$, $\pi/3 \le \theta \le 2\pi/3$

11.
$$2 < r < 3$$
, $\frac{5\pi}{3} \le \theta \le \frac{7\pi}{3}$

12.
$$r \ge 1, \pi \le \theta \le 2\pi$$

13. Converting the polar coordinates $(2, \pi/3)$ and $(4, 2\pi/3)$ to Cartesian coordinates gives us $(2\cos\frac{\pi}{3}, 2\sin\frac{\pi}{3}) = (1, \sqrt{3})$ and $\left(4\cos\frac{2\pi}{3},4\sin\frac{2\pi}{3}\right)=\left(-2,2\sqrt{3}\,\right)$. Now use the distance formula.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(-2 - 1)^2 + (2\sqrt{3} - \sqrt{3})^2} = \sqrt{9 + 3} = \sqrt{12} = 2\sqrt{3}$$

14. The points (r_1, θ_1) and (r_2, θ_2) in Cartesian coordinates are $(r_1 \cos \theta_1, r_1 \sin \theta_1)$ and $(r_2 \cos \theta_2, r_2 \sin \theta_2)$, respectively. The square of the distance between them is

$$(r_2 \cos \theta_2 - r_1 \cos \theta_1)^2 + (r_2 \sin \theta_2 - r_1 \sin \theta_1)^2$$

$$= (r_2^2 \cos^2 \theta_2 - 2r_1 r_2 \cos \theta_1 \cos \theta_2 + r_1^2 \cos^2 \theta_1) + (r_2^2 \sin^2 \theta_2 - 2r_1 r_2 \sin \theta_1 \sin \theta_2 + r_1^2 \sin^2 \theta_1)$$

$$= r_1^2 (\sin^2 \theta_1 + \cos^2 \theta_1) + r_2^2 (\sin^2 \theta_2 + \cos^2 \theta_2) - 2r_1 r_2 (\cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2)$$

$$= r_1^2 - 2r_1 r_2 \cos(\theta_1 - \theta_2) + r_2^2,$$

so the distance between them is $\sqrt{r_1^2 - 2r_1r_2\cos(\theta_1 - \theta_2) + r_2^2}$.

- **15.** $r=2 \Leftrightarrow \sqrt{x^2+y^2}=2 \Leftrightarrow x^2+y^2=4$, a circle of radius 2 centered at the origin.
- **16.** $r\cos\theta = 1 \Leftrightarrow x = 1$, a vertical line.
- 17. $r = 3\sin\theta \implies r^2 = 3r\sin\theta \iff x^2 + y^2 = 3y \iff x^2 + \left(y \frac{3}{2}\right)^2 = \left(\frac{3}{2}\right)^2$, a circle of radius $\frac{3}{2}$ centered at $\left(0, \frac{3}{2}\right)$. The first two equations are actually equivalent since $r^2 = 3r\sin\theta \implies r(r-3\sin\theta) = 0 \implies r = 0$ or $r = 3\sin\theta$. But $r=3\sin\theta$ gives the point r=0 (the pole) when $\theta=0$. Thus, the single equation $r=3\sin\theta$ is equivalent to the compound condition $(r = 0 \text{ or } r = 3 \sin \theta)$.
- **18.** $r = 2\sin\theta + 2\cos\theta \implies r^2 = 2r\sin\theta + 2r\cos\theta \iff x^2 + y^2 = 2y + 2x \iff x^2 + y^2 = 2y + 2x$ $(x^2-2x+1)+(y^2-2y+1)=2 \Leftrightarrow (x-1)^2+(y-1)^2=2$. The first implication is reversible since $r^2=2r\sin\theta+2r\cos\theta \ \Rightarrow \ r=0 \ {
 m or} \ r=2\sin\theta+2\cos\theta,$ but the curve $r=2\sin\theta+2\cos\theta$ passes through the pole (r=0) when $\theta=-\frac{\pi}{4}$, so $r=2\sin\theta+2\cos\theta$ includes the single point of r=0. The curve is a circle of radius $\sqrt{2}$, centered at (1, 1).
- 19. $r = \csc \theta \iff r = \frac{1}{\sin \theta} \iff r \sin \theta = 1 \iff y = 1$, a horizontal line 1 unit above the x-axis.
- **20.** $r = \tan \theta \sec \theta = \frac{\sin \theta}{\cos^2 \theta} \implies r \cos^2 \theta = \sin \theta \iff (r \cos \theta)^2 = r \sin \theta \iff x^2 = y$, a parabola with vertex at the origin opening upward. The first implication is reversible since $\cos\theta=0$ would imply $\sin\theta=r\cos^2\theta=0$, contradicting the fact that $\cos^2 \theta + \sin^2 \theta = 1$.

- **21.** $x=3 \Leftrightarrow r\cos\theta=3 \Leftrightarrow r=3/\cos\theta \Leftrightarrow r=3\sec\theta.$
- **22.** $x^2 + y^2 = 9 \Leftrightarrow r^2 = 9 \Leftrightarrow r = 3$. [r = -3] gives the same curve.]
- 23. $x = -y^2 \Leftrightarrow r\cos\theta = -r^2\sin^2\theta \Leftrightarrow \cos\theta = -r\sin^2\theta \Leftrightarrow r = -\frac{\cos\theta}{\sin^2\theta} = -\cot\theta\csc\theta.$
- **24.** $x + y = 9 \Leftrightarrow r \cos \theta + r \sin \theta = 9 \Leftrightarrow r = 9/(\cos \theta + \sin \theta).$
- **25.** $x^2 + y^2 = 2cx \Leftrightarrow r^2 = 2cr\cos\theta \Leftrightarrow r^2 2cr\cos\theta = 0 \Leftrightarrow r(r 2c\cos\theta) = 0 \Leftrightarrow r = 0 \text{ or } r = 2c\cos\theta.$ r=0 is included in $r=2c\cos\theta$ when $\theta=\frac{\pi}{2}+n\pi$, so the curve is represented by the single equation $r=2c\cos\theta$.
- **26.** $xy = 4 \Leftrightarrow (r\cos\theta)(r\sin\theta) = 4 \Leftrightarrow r^2\left(\frac{1}{2}\cdot 2\sin\theta\,\cos\theta\right) = 4 \Leftrightarrow r^2\sin2\theta = 8 \Rightarrow r^2 = 8\csc2\theta$
- 27. (a) The description leads immediately to the polar equation $\theta = \frac{\pi}{6}$, and the Cartesian equation $y = \tan(\frac{\pi}{6}) x = \frac{1}{\sqrt{3}} x$ is slightly more difficult to derive.
 - (b) The easier description here is the Cartesian equation x=3.
- **28.** (a) Because its center is not at the origin, it is more easily described by its Cartesian equation, $(x-2)^2 + (y-3)^2 = 5^2$.
 - (b) This circle is more easily given in polar coordinates: r=4. The Cartesian equation is also simple: $x^2+y^2=16$.
- **29.** $\theta = -\pi/6$

31. $r = \sin \theta \iff r^2 = r \sin \theta \iff x^2 + y^2 = y \iff$ $x^2+\left(y-\frac{1}{2}\right)^2=\left(\frac{1}{2}\right)^2$. The reasoning here is the same as in Exercise 17. This is a circle of radius $\frac{1}{2}$ centered at $(0, \frac{1}{2})$.

33. $r = 2(1 - \sin \theta)$. This curve is a cardioid.

30. $r^2 - 3r + 2 = 0 \Leftrightarrow (r-1)(r-2) = 0 \Leftrightarrow$

32. $r = -3\cos\theta \iff r^2 = -3r\cos\theta \iff$ $x^2 + y^2 = -3x \iff (x + \frac{3}{2})^2 + y^2 = (\frac{3}{2})^2.$

This curve is a circle of radius $\frac{3}{2}$ centered at $\left(-\frac{3}{2},0\right)$.

34. $r = 1 - 3\cos\theta$. This is a limaçon.

