Def. A sequence of real numbers is an ordered list of real numbers. Common notations for sequences are:

$$
\left\{a_{n}\right\}_{n=1}^{\infty} \stackrel{\text { or }}{=}\left\{a_{1}, a_{2}, a_{3}, a_{4}, \ldots\right\} \quad \text { or } \quad\left\{a_{n}\right\}_{n=17}^{\infty} \stackrel{\text { or }}{=}\left\{a_{17}, a_{18}, a_{19}, a_{20}, \ldots\right\}
$$

We can also think of a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ as a function $f: \mathbb{N} \rightarrow \mathbb{R}$ where $f(n)=a_{n}$.
Ex. 1. The sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty} \stackrel{\text { or }}{=}\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$. Here $a_{n}=\frac{1}{n}$.
We can also view the sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ as the function $f: \mathbb{N} \rightarrow \mathbb{R}$ given by $f(n)=\frac{1}{n}$ for $n \in \mathbb{N}$.
We can extend the domain of $f$ to get the function $f:[1, \infty) \rightarrow \mathbb{R}$ given by $f(x)=\frac{1}{x}$ for $x \in[1, \infty)$.
Let's draw a picture.

Guess: $\lim _{n \rightarrow \infty} \frac{1}{n}=\square$.

## Limit of a Function -vs- Limit of a Sequence

Now consider a function $f:[1, \infty) \rightarrow \mathbb{R}$ and a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ related by $f(n)=a_{n}$.
So we can view this sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ as the function $f: \mathbb{N} \rightarrow \mathbb{R}$.
In Calc. I, we learned how to take a limit of a function.
Calc.I. The limit of the function $y=f(x)$ as $x \rightarrow \infty$ is $L$, which is written $\lim _{x \rightarrow \infty} f(x)=L$ or $\lim _{\substack{x \rightarrow \infty \\ x \in \mathbb{R}}} f(x)=L$ In Calc. II, we now learn how to take a limit of a sequence.
Calc.II. The limit of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ as $n \rightarrow \infty$ is $L$, which is written $\lim _{n \rightarrow \infty} a_{n}=L$ or $\lim _{\substack{n \rightarrow \infty \\ n \in \mathbb{N}}} a_{n}=L$. Theses two limits concepts are closely related. So first let's remind ourselves the definiton of limit of a function and then do the necessary modifications to get the definition of limit of a sequence. We will have 3 cases:

- Case 1. $L \in \mathbb{R}$, i.e., $L$ is some (finite) real number
- Case 2. $L=\infty$
- Case 3. $L=-\infty$.

Defintions of: Limit of a Function \& Limit of a Sequence
Case $L \in \mathbb{R}$.
1fun. $\lim _{\substack{x \rightarrow \infty \\ x \in \mathbb{R}}} f(x)=L \in \mathbb{R} \Leftrightarrow$ for each $\varepsilon>0$, there is $M \in[1, \infty)$, such that if $x \geq M$ then $|f(x)-L| \leq \varepsilon$.
1seq. $\lim _{\substack{n \rightarrow \infty \\ n \in \mathbb{N}}} a_{n}=L \in \mathbb{R} \Leftrightarrow$ for each $\varepsilon>0$, there exists $M \in \mathbb{N}$, such that if $n \geq M$ then $\left|a_{n}-L\right| \leq \varepsilon$.

$$
\text { Case } L=\infty
$$

2fun. $\lim _{\substack{x \rightarrow \infty \\ x \in \mathbb{R}}} f(x)=\infty \Leftrightarrow$ for each $B \in \mathbb{R}$, there exists $M \in[1, \infty)$, such that if $x \geq M$ then $f(x) \geq B$. 2seq. $\lim _{\substack{x \rightarrow \infty \\ n \in \mathbb{N}}}^{\substack{x \rightarrow \mathbb{R}}} a_{n}=\infty \Leftrightarrow$ for each $B \in \mathbb{R}$, there exists $M \in \mathbb{N}, \quad$ such that if $n \geq M$ then $a_{n} \geq B$.

$$
\text { Case } L=-\infty
$$

3fun. $\lim _{\substack{x \rightarrow \infty \\ x \in \mathbb{R}}} f(x)=-\infty \Leftrightarrow$ for each $B \in \mathbb{R}$, there exists $M \in[1, \infty)$, such that if $x \geq M$ then $f(x) \leq B$. 3seq. $\lim _{\substack{n \rightarrow \infty \\ n \in \mathbb{N}}} a_{n}=-\infty \Leftrightarrow$ for each $B \in \mathbb{R}$, there exists $M \in \mathbb{N}$, such that if $n \geq M$ then $a_{n} \leq B$.

## Doesn't matter where you start theorem.

Consider two sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$. (Now think of an integer, like 17, and call him $n_{0} \ldots$ so $n_{0}=17$.) Assume that for each $n \geq n_{0}$, we know that $a_{n}=b_{n}$
Theorem: If $\lim _{n \rightarrow \infty} a_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=\square$.

## Limits of Functions vs. Limits of Sequences

Consider a function $f:\left[n_{0}, \infty\right) \rightarrow \mathbb{R}$ and a sequence $\left\{a_{n}\right\}_{n}$ such that $a_{n}=f(n)$ for each $n \geq n_{0}$. Theorem 4. Then $\lim _{\substack{x \rightarrow \infty \\ x \in \mathbb{R}}} f(x)=L \Longrightarrow \lim _{\substack{n \rightarrow \infty \\ n \in \mathbb{N}}} a_{n}=L$.
Question. What about the reverse implication?

## Limits of Functions From Previous Homework

1. $\lim _{\substack{z \rightarrow \infty \\ z \in \mathbb{R}}} \frac{\ln z}{z}=0$
2. $\lim _{\substack{z \rightarrow \infty \\ z \in \mathbb{R}}} z^{1 / z}=1$
3. Let $c>0$ be a positive constant. $\lim _{\substack{z \rightarrow \infty \\ z \in \mathbb{R}}} c^{1 / z}=1$

4a. Let $0 \leq c<1$ be a constant. $\lim _{\substack{z \rightarrow \infty \\ z \in \mathbb{R}}} c^{z}=0$
4b. Let $c=1$. $\lim _{\substack{z \rightarrow \infty \\ z \in \mathbb{R}}} c^{z}=1$
4c. Let $c>1$ be a constant. $\lim _{\substack{z \rightarrow \infty \\ z \in \mathbb{R}}} c^{z}=\infty$
5. Let $c$ be a constant. $\lim _{\substack{z \rightarrow \infty \\ z \in \mathbb{R}}}\left(1+\frac{c}{z}\right)^{z}=e^{c}$

## Commonly Occurring Limits of Sequences

In the below, you can think of $\lim _{n \rightarrow \infty}$ as $\lim _{\substack{n \rightarrow \infty \\ n \in \mathbb{N}}}$
Also, think of $x$ in below Theorem 5 as a constant $c$ as in above Limits of Functions.

THEOREM 5 The following six sequences converge to the limits listed below:

1. $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$
2. $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$
3. $\quad \lim _{n \rightarrow \infty} x^{1 / n}=1 \quad(x>0)$
4. $\lim _{n \rightarrow \infty} x^{n}=0 \quad(|x|<1)$
5. $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x} \quad($ any $x)$
6. $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0 \quad$ (any $x$ )

In Formulas (3) through (6), $x$ remains fixed as $n \rightarrow \infty$.
 We will show 6 when we cover the Ratio Test in a few sections.

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence. As customary, we often shorten $\left\{a_{n}\right\}_{n=1}^{\infty}$ to just $\left\{a_{n}\right\}_{n}$ or $\left\{a_{n}\right\}$.
Theorems

THEOREM 1 Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of real numbers, and let $A$ and $B$ be real numbers. The following rules hold if $\lim _{n \rightarrow \infty} a_{n}=A$ and $\lim _{n \rightarrow \infty} b_{n}=B$.

1. Sum Rule:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=A+B \\
& \lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=A-B \\
& \lim _{n \rightarrow \infty}\left(k \cdot b_{n}\right)=k \cdot B \quad \text { (any number } k \text { ) } \\
& \lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=A \cdot B \\
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{A}{B} \quad \text { if } B \neq 0
\end{aligned}
$$

2. Difference Rule:
3. Constant Multiple Rule:
4. Product Rule:
5. Quotient Rule:

THEOREM 3-The Continuous Function Theorem for Sequences Let $\left\{a_{n}\right\}$ be a sequence of real numbers. If $a_{n} \rightarrow L$ and if $f$ is a function that is continuous at $L$ and defined at all $a_{n}$, then $f\left(a_{n}\right) \rightarrow f(L)$.

THEOREM 2-The Sandwich Theorem for Sequences Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ be sequences of real numbers. If $a_{n} \leq b_{n} \leq c_{n}$ holds for all $n$ beyond some index $N$, and if $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$ also.

Theorem. If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$. hint: $\quad-\left|a_{n}\right| \leq a_{n} \leq\left|a_{n}\right|$
Theorem. If $\left|a_{n}\right| \leq b_{n}$ and $\lim _{n \rightarrow \infty}\left|b_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$. hint: $-b_{n} \leq-\left|a_{n}\right| \leq a_{n} \leq\left|a_{n}\right| \leq b_{n}$

## Definitions

1. $\left\{a_{n}\right\}$ is bounded above provided there is a $M \in \mathbb{R}$ such that $a_{n} \leq M$ for all $n \in \mathbb{N}$.
2. $\left\{a_{n}\right\}$ is bounded below provided there is a $M \in \mathbb{R}$ such that $a_{n} \geq M$ for all $n \in \mathbb{N}$.
3. $\left\{a_{n}\right\}$ is called nondecreasing (or increasing, denoted by $\nearrow$ ) provided $a_{n} \leq \leq a_{n+1}$ for all $n \in \mathbb{N}$.
4. $\left\{a_{n}\right\}$ is called nonincreasing (or decreasing, denoted by $\searrow$ ) provided $a_{n} \geq a_{n+1}$ for all $n \in \mathbb{N}$.
5. $\left\{a_{n}\right\}$ is called monotonic provided $\left\{a_{n}\right\}$ is nondecreasing or nonincreasing.

## Theorems

1. Let $\left\{a_{n}\right\}$ be $\nearrow$. Then either

- $\left\{a_{n}\right\}$ converges (to some finite number)
or
- $\left\{a_{n}\right\}$ diverges to $\infty$.

Futhermore: $\quad\left\{a_{n}\right\}$ converges (to a finite number) $\Longleftrightarrow\left\{a_{n}\right\}$ is bounded above.
2. Let $\left\{a_{n}\right\}$ be $\searrow$. Then either

- $\left\{a_{n}\right\}$ converges (to some finite number)
or
- $\left\{a_{n}\right\}$ diverges to $-\infty$.

Futhermore: $\left\{a_{n}\right\}$ converges (to a finite number) $\Longleftrightarrow\left\{a_{n}\right\}$ is bounded below.

