**Def.** A sequence of real numbers is an ordered list of real numbers. Common notations for sequences are:

$$\{a_n\}_{n=1}^{\infty} \stackrel{\text{or}}{=} \{a_1, a_2, a_3, a_4, \ldots\} \qquad \text{or} \qquad \{a_n\}_{n=17}^{\infty} \stackrel{\text{or}}{=} \{a_{17}, a_{18}, a_{19}, a_{20}, \ldots\}$$

We can also think of a sequence  $\{a_n\}_{n=1}^{\infty}$  as a function  $f: \mathbb{N} \to \mathbb{R}$  where  $|f(n) = a_n|$ .

**Ex. 1.** The sequence  $\left\{\frac{1}{n}\right\}_{n=1}^{\infty} \stackrel{\text{or}}{=} \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$ . Here  $a_n = \frac{1}{n}$ . We can also view the sequence  $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$  as the function  $f \colon \mathbb{N} \to \mathbb{R}$  given by  $f(n) = \frac{1}{n}$  for  $n \in \mathbb{N}$ . We can extend the domain of f to get the function  $f: [1, \infty) \to \mathbb{R}$  given by  $f(x) = \frac{1}{x}$  for  $x \in [1, \infty)$ . Let's draw a picture.



Limit of a Function -vs- Limit of a Sequence

Now consider a function  $f: [1, \infty) \to \mathbb{R}$  and a sequence  $\{a_n\}_{n=1}^{\infty}$  related by  $f(n) = a_n$ . So we can view this sequence  $\{a_n\}_{n=1}^{\infty}$  as the function  $f: \mathbb{N} \to \mathbb{R}$ .

In Calc. I, we learned how to take a limit of a function.

**Calc.I.** The <u>limit of the function</u> y = f(x) as  $x \to \infty$  is L, which is written  $\lim_{x \to \infty} f(x) = L$  or  $\lim_{\substack{x \to \infty \\ x \in \mathbb{R}}} f(x) = L$ In Calc. II, we now learn how to take a limit of a sequence.

**Calc.II.** The limit of the sequence  $\{a_n\}_{n=1}^{\infty}$  as  $n \to \infty$  is L, which is written  $\lim_{n \to \infty} a_n = L$  or  $\lim_{\substack{n \to \infty \\ n \in \mathbb{N}}} a_n = L$ .

Theses two limits concepts are closely related. So first let's remind ourselves the definiton of limit of a function and then do the necessary modifications to get the definition of limit of a sequence. We will have 3 cases:

- Case 1.  $L \in \mathbb{R}$ , i.e., L is some (finite) real number
- Case 2.  $L = \infty$
- Case 3.  $L = -\infty$ .

# Definitions of: Limit of a Function & Limit of a Sequence

Case 
$$L \in \mathbb{R}$$
.

**1fun.**  $\lim_{\substack{x \to \infty \\ x \in \mathbb{R}}} f(x) = L \in \mathbb{R} \Leftrightarrow \text{ for each } \varepsilon > 0, \text{ there is } M \in [1, \infty), \text{ such that if } x \ge M \text{ then } |f(x) - L| \le \varepsilon$ . **1seq.**  $\lim_{\substack{n \to \infty \\ n \in \mathbb{N}}} a_n = L \in \mathbb{R} \Leftrightarrow \text{ for each } \varepsilon > 0, \text{ there exists } M \in \mathbb{N}, \text{ such that if } n \ge M \text{ then } |a_n - L| \le \varepsilon$ .

|       | Case $L = \infty$ .                                                                                                                                                                                                         |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2fun. | $\lim_{x \to \infty} f(x) = \infty \Leftrightarrow \text{ for each } B \in \mathbb{R}, \text{ there exists } M \in [1, \infty), \text{ such that if } x \ge M \text{ then } f(x) \ge B$                                     |  |
| 2seq. | $\lim_{\substack{n \to \infty \\ n \in \mathbb{N}}} a_n = \infty \Leftrightarrow \text{ for each } B \in \mathbb{R}, \text{ there exists } M \in \mathbb{N}, \qquad \text{ such that if } n \ge M \text{ then } a_n \ge B.$ |  |

Case  $L = -\infty$ .

**3fun.**  $\lim_{\substack{x \to \infty \\ x \in \mathbb{R}}} f(x) = -\infty \Leftrightarrow \text{ for each } B \in \mathbb{R}, \text{ there exists } M \in [1, \infty), \text{ such that if } x \ge M \text{ then } f(x) \le B \text{ .}$  **3seq.**  $\lim_{\substack{n \to \infty \\ n \in \mathbb{N}}} a_n = -\infty \Leftrightarrow \text{ for each } B \in \mathbb{R}, \text{ there exists } M \in \mathbb{N}, \text{ such that if } n \ge M \text{ then } a_n \le B \text{ .}$ 

# Doesn't matter where you start theorem.

Consider two sequences  $\{a_n\}_{n=1}^{\infty}$  and  $\{b_n\}_{n=1}^{\infty}$ . (Now think of an integer, like 17, and call him  $n_0 \dots$  so  $n_0 = 17$ .) Assume that for each  $n \ge n_0$ , we know that  $a_n = b_n$ Theorem: If  $\lim_{n\to\infty} a_n = L$ , then  $\lim_{n\to\infty} b_n =$ .

## Limits of Functions vs. Limits of Sequences

Consider a function  $f: [n_0, \infty) \to \mathbb{R}$  and a sequence  $\{a_n\}_n$  such that  $a_n = f(n)$  for each  $n \ge n_0$ . <u>Theorem 4</u>. Then  $\lim_{\substack{x \to \infty \\ x \in \mathbb{R}}} f(x) = L \implies \lim_{\substack{n \to \infty \\ n \in \mathbb{N}}} a_n = L$ . Question. What about the reverse implication?

### Limits of Functions From Previous Homework

1.  $\lim_{\substack{z \to \infty \\ z \in \mathbb{R}}} \frac{\ln z}{z} = 0$ 2.  $\lim_{\substack{z \to \infty \\ z \in \mathbb{R}}} z^{1/z} = 1$ 

**3.** Let c > 0 be a positive constant.  $\lim_{\substack{z \to \infty \\ z \in \mathbb{R}}} c^{1/z} = 1$ 

- **4a.** Let  $0 \le c < 1$  be a constant.  $\lim_{\substack{z \to \infty \\ z \in \mathbb{R}}} c^z = 0$
- **4b.** Let c = 1.  $\lim_{\substack{z \to \infty \\ z \in \mathbb{R}}} c^z = 1$ **4c.** Let c > 1 be a constant.  $\lim_{z \to \infty} c^z = -\infty$

**5.** Let c be a constant. 
$$\lim_{\substack{z \to \infty \\ z \in \mathbb{R}}} \left(1 + \frac{c}{z}\right)^z = e^c$$

### **Commonly Occurring Limits of Sequences**

In the below, you can think of  $\lim_{n \to \infty}$  as  $\lim_{\substack{n \to \infty \\ n \in \mathbb{N}}}$ Also, think of x in below Theorem 5 as a constant c as in above Limits of Functions.

> **THEOREM 5** The following six sequences converge to the limits listed below: **1.**  $\lim_{n \to \infty} \frac{\ln n}{n} = 0$  **2.**  $\lim_{n \to \infty} \sqrt[n]{n} = 1$  **3.**  $\lim_{n \to \infty} x^{1/n} = 1$  (x > 0) **4.**  $\lim_{n \to \infty} x^n = 0$  (|x| < 1) **5.**  $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$  (any x) **6.**  $\lim_{n \to \infty} \frac{x^n}{n!} = 0$  (any x) In Formulas (3) through (6), x remains fixed as  $n \to \infty$ .

For 4, note if  $x \in \mathbb{R}$  then  $0 \le |x^n| = |x|^n \xrightarrow{n \to \infty, \text{ if } |x| < 1 \text{ by 4a.}} 0$ . Now use Sandwich/Squeeze Theorem. We will show 6 when we cover the Ratio Test in a few sections.

Let  $\{a_n\}_{n=1}^{\infty}$  be a sequence. As customary, we often shorten  $\{a_n\}_{n=1}^{\infty}$  to just  $\{a_n\}_n$  or  $\{a_n\}$ . Theorems

**THEOREM 1** Let  $\{a_n\}$  and  $\{b_n\}$  be sequences of real numbers, and let *A* and *B* be real numbers. The following rules hold if  $\lim_{n\to\infty} a_n = A$  and  $\lim_{n\to\infty} b_n = B$ .

| 1. Sum Rule:               | $\lim_{n \to \infty} (a_n + b_n) = A + B$                                      |
|----------------------------|--------------------------------------------------------------------------------|
| 2. Difference Rule:        | $\lim_{n\to\infty}(a_n-b_n)=A-B$                                               |
| 3. Constant Multiple Rule: | $\lim_{n\to\infty} (k \cdot b_n) = k \cdot B$ (any number k)                   |
| 4. Product Rule:           | $\lim_{n\to\infty}(a_n\cdot b_n)=A\cdot B$                                     |
| 5. Quotient Rule:          | $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B} \qquad \text{if } B \neq 0$ |

**THEOREM 3—The Continuous Function Theorem for Sequences** Let  $\{a_n\}$  be a sequence of real numbers. If  $a_n \rightarrow L$  and if f is a function that is continuous at L and defined at all  $a_n$ , then  $f(a_n) \rightarrow f(L)$ .

**THEOREM 2—The Sandwich Theorem for Sequences** Let  $\{a_n\}$ ,  $\{b_n\}$ , and  $\{c_n\}$  be sequences of real numbers. If  $a_n \le b_n \le c_n$  holds for all *n* beyond some index *N*, and if  $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$ , then  $\lim_{n\to\infty} b_n = L$  also.

