Setup. Given $y=f(x)$ and x_{0} in an interval I. Know the derivatives of $y=f^{(n)}(x)$ exist for each $x \in I$ and for each $n \in \mathbb{N}$.
The $N^{\text {th }}$-order Taylor polynomial for $y=f(x)$ at x_{0} is:

$$
p_{N}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(N)}\left(x_{0}\right)}{N!}\left(x-x_{0}\right)^{N}
$$

(open form)
which can also be written in open form as (recall that $0!=1$)
$p_{N}(x)=\frac{f^{(0)}\left(x_{0}\right)}{0!}+\frac{f^{(1)}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{(2)}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+\cdots+\frac{f^{(N)}\left(x_{0}\right)}{N!}\left(x-x_{0}\right)^{N}$, which can also be written in closed form, by using sigma notation, as

$$
p_{N}(x)=\sum_{n=0}^{N} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} .
$$

(closed form)
So $y=p_{N}(x)$ is a polynomial of degree at most N and it has the form

$$
p_{N}(x)=\sum_{n=0}^{N} c_{n}\left(x-x_{0}\right)^{n} \quad \text { where the } \underline{n^{\text {th }} \text { Taylor coefficients }} \quad c_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!} \text { are constants. }
$$

The c_{n} is choosen so that $f^{(n)}\left(x_{0}\right)=\left(p_{n}\right)^{(n)}\left(x_{0}\right)$. Knowing $y=P_{N}(x)$, how can you find $y=P_{N+1}(x)$? $p_{N+1}(x)=\sum_{n=0}^{N+1} c_{n}\left(x-x_{0}\right)^{n}=\left[\sum_{n=0}^{N} c_{n}\left(x-x_{0}\right)^{n}\right]+\left(c_{N+1}\left(x-x_{0}\right)^{N+1}\right)=P_{N}(x)+c_{N+1}\left(x-x_{0}\right)^{N+1}$. The Taylor series for $y=f(x)$ at x_{0} is the power series:

$$
P_{\infty}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+\ldots \quad \text { (open form) }
$$

which can also be written as
$P_{\infty}(x)=\frac{f^{(0)}\left(x_{0}\right)}{0!}+\frac{f^{(1)}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{(2)}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+\ldots \quad \hookleftarrow$ the sum keeps on going and going.
The Taylor series can also be written in closed form, by using sigma notation, as

$$
P_{\infty}(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

(closed form)
The Maclaurin polynomial/series for $y=f(x)$ is just the Taylor polynomial/series for $y=f(x)$ at $x_{0}=0$.
Example 1. Given the function $f(x)=\frac{1}{1-x}$ with center at $x_{0}=0$.

Helpful Table for Example 1			
n	$f^{(n)}(x)$	$f^{(n)}\left(x_{0}\right) \stackrel{\text { here }}{=} f^{(n)}(0)$	$c_{n} \stackrel{\text { def }}{=} \frac{f^{(n)}\left(x_{0}\right)}{n!} \stackrel{\text { here }}{=} \frac{f^{(n)}(0)}{n!}$
0	$(1-x)^{-1}$	$(1-0)^{-1}=1$	$\frac{1}{0!}=\frac{1}{1} \frac{\text { note }}{=} \frac{0!}{0!}=1$
1	$-(1-x)^{-2}(-1)=(1-x)^{-2}$	$(1-0)^{-2}=1$	$\frac{1}{1!}=\frac{1!}{1!}=1$
2	$-2(1-x)^{-3}(-1)=2(1-x)^{-3}$	$2(1-0)^{-3}=2$	$\frac{2}{2!}=\frac{2!}{2!}=1$
3	$2(-3)(1-x)^{-4}(-1)=3!(1-x)^{-4}$	$3!(1-0)^{-4}=3!$	$\frac{3!}{3!}=1$
4	$3!(-4)(1-x)^{-5}(-1)=4!(1-x)^{-5}$	$4!(1-0)^{-5}=4!$	$\frac{4!}{4!}=1$
5	$4!(-5)(1-x)^{-6}(-1)=5!(1-x)^{-6}$	$5!(1-0)^{-6}=5!$	$\frac{5!}{5!}=1$
6	$5!(-6)(1-x)^{-7}(-1)=6!(1-x)^{-7}$	$6!(1-0)^{-7}=6!$	$\frac{6!}{6!}=1$
\vdots			
n			

1.1. Find the $N^{\text {th }}$-order Taylor polynomial of $f(x)=\frac{1}{1-x}$ centered at $x_{0}=0$ for $N=0,1,2,3,4$.

Do not use \sum-sign.

$$
\begin{array}{ll}
p_{0}(x)= & \text {, cleaned up, } p_{0}(x)=\square \\
p_{1}(x)=\square & \text {, cleaned up, } p_{1}(x)=\square \\
p_{2}(x)=\square & \text {, cleaned up, } p_{2}(x)=\square \\
p_{3}(x)=\square & \text {, cleaned up, } p_{3}(x)= \\
p_{4}(x)= & \text {, cleaned up, } p_{4}(x)= \\
\hline
\end{array}
$$

1.2. Express the $4^{\text {th }}$-order Taylor polynomial of $f(x)=\frac{1}{1-x}$ centered at $x_{0}=0$ in closed form (i.e., with \sum-sign). $p_{4}(x)=\square \quad$, cleaned up, $p_{4}(x)=\square$
1.3. Fill in the last row in the Helpful Table for Example 1.
1.4. What is the $n^{\text {th }}$ Taylor coefficient of $f(x)=\frac{1}{1-x}$ centered at $x_{0}=0$?

$$
c_{n}=\square \quad \text { for } n=0,1,2,3,4,5, \ldots
$$

1.5. Express the $N^{\text {th }}$-order Taylor polynomial of $f(x)=\frac{1}{1-x}$ centered at $x_{0}=0$ in closed form (i.e., use \sum-sign).

$$
p_{N}(x)=\square \quad \text {, cleaned up, } p_{N}(x)=\square
$$

1.6. Find the Taylor series of $f(x)=\frac{1}{1-x}$ centered at $x_{0}=0$. Use closed form (i.e., use \sum-sign).

1.7. Express the Taylor series of $f(x)=\frac{1}{1-x}$ centered at $x_{0}=0$ in open form (i.e., use \ldots-sign).
$P_{\infty}(x)=$ \qquad
or, by including the general term, we can also express as
$P_{\infty}(x)=$ \qquad
1.8. Find the interval of convergence of the Taylor series of $f(x)=\frac{1}{1-x}$ centered at $x_{0}=0$.

- Aside. Let's think about this example some more. We were given the center $x_{0}=0$ and the function

$$
f(x)=\frac{1}{1-x}
$$

Then we have computed the Taylor series P_{∞} as

$$
\begin{equation*}
P_{\infty}(x)=\sum_{n=0}^{\infty} x^{n} \tag{1.1}
\end{equation*}
$$

and showed that power series series in (1.1) converges when $|x|<1$.
Recall that for the Geometric Series

$$
\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r} \quad, \text { which is valid when }|r|<1
$$

which we showed some time ago by considering the $s_{n}-r s_{n}$. Replacing r by x we get

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad, \text { which is valid when }|x|<1
$$

which gives that the function $y=\frac{1}{1-x}$ has a power series representation.
Theorem 1.1. Power series vs. Taylor series.
If a function $y=f(x)$ has a power series representation about center $x=x_{0}$ with radius of conv. $R>0$, then that power series representation is the Taylor series for $y=f(x)$ about center $x=x_{0}$.
I.e. (just going to repharse ...)

If for some $R>0$

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n} \quad, \text { which is valid when }\left|x-x_{0}\right|<R \tag{1.2}
\end{equation*}
$$

then the c_{n} 's must satisfy

$$
c_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}
$$

and so the power series in (1.2) is the Taylor series of $y=f(x)$ about the center $x=x_{0}$.
To see why this Theorem is true, see the handout Power Series vs. Taylor Series.
Warning.
It is possible for a function not to be equal to it's Taylor series, which as radius of convergence $R>0$. For such a function f, all its derivaties $f^{(n)}$ exist so you can (formally) write down it's Taylor series. But it's Taylor series does not converge to the function f.
For an example of such a function, see the handout Power Series vs. Taylor Series.
In this example the center is $x_{0}=0$ and the Taylor series is $P_{\infty}(x)=0$ for each $x \in \mathbb{R}$.
But $f(x)=0$ only when x is \qquad .

Example 2. Given the function $f(x)=\sin x$ with center at $x_{0}=\pi$.

Helpful Table for Example 1						
k	$2 k+1$	n	$f^{(n)}(x)$	$f^{(n)}\left(x_{0}\right) \stackrel{\text { here }}{=} f^{(n)}(\pi)$	$c_{n} \stackrel{\text { def }}{=} \frac{f^{(n)}\left(x_{0}\right)}{n!} \frac{\text { here }}{=} \frac{f^{(n)}(\pi)}{n!}$	
		0	$\sin x$	$\sin \pi=0$	$\frac{0}{0!}=\frac{0}{1}=0$	
		1	$\cos x$	$\cos \pi=-1$	$\frac{-1}{1!}=-\frac{1}{1}=-1$	
		2	$-\sin x$	$-\sin \pi=0$	$\frac{0}{2!}=0$	
		3	$-\cos x$	$-\cos \pi=-(-1)=1$	$\frac{1}{3!}=+\frac{1}{3!}$	
		4	$\sin x$	$\sin \pi=0$	$\frac{0}{4!}=0$	
		5	$\cos x$	$\cos \pi=-1$	$\frac{-1}{5!}=-\frac{1}{5!}$	
		6	$-\sin x$	$-\sin \pi=0$	$\frac{0}{6!}=0$	
		7	$-\cos x$	$-\cos \pi=1$	$\frac{1}{7!}=+\frac{1}{7!}$	

- Note $f^{(4)}(x)=f^{(0)}(x)$ so derivatives repeat/cycle in sets of 4 .
2.1. Find the $N^{\text {th }}$-order Taylor polynomial of $f(x)=\sin x$ centered at $x_{0}=\pi$ for $N=0,1, \ldots, 8$ and $N=11$. Do not use \sum-sign.

$$
\begin{aligned}
& p_{0}(x)= \\
& p_{1}(x)= \\
& p_{2}(x)=\begin{array}{c}
\text { cleaned up, } \\
\text {, cleaned up, } \\
\hline
\end{array} p_{0}(x)=. \\
& \text {, cleaned up, } p_{2}(x)=.
\end{aligned}
$$

\qquad
\qquad
\qquad Now let's just do the cleaned up version from the onset.

$$
\begin{aligned}
& p_{3}(x)= \\
& p_{4}(x)= \\
& p_{5}(x)= \\
& p_{6}(x)= \\
& p_{7}(x)= \\
& p_{8}(x)= \\
& p_{11}(x)=
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Why do we use the term $N^{\text {th }}$ order Taylor polynomial instead of $N^{\text {th }}$ degree Taylor polynomial?
2.2. Express the Taylor series of $f(x)=\sin x$ centered at $x_{0}=\pi$ in open form (i.e, use . . -sign).
$P_{\infty}(x)=$ \qquad
2.3. Find the Taylor series of $f(x)=\sin x$ centered at $x_{0}=\pi$. Use closed form (i.e, use \sum-sign).

Hint: $(-1)^{\text {an even number }}=\quad$ while $(-1)^{\text {an odd number }}=$ \qquad .

2.4. Find the interval of convergence and radius of conv. of the Taylor series of $f(x)=\sin x$ centered at $x_{0}=\pi$.
2.5. Time to recall one of the Commonly Used Sequences. Let $x \in \mathbb{R}$.

Show that $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$ is absolutely convergent (hint: ratio test). Conclude that $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$.
2.6. Show that $f(x)=\sin x$ is equal to it's Taylor series centered at $x_{0}=\pi$ for each $x \in \mathbb{R}$. I.e., show that

$$
\begin{equation*}
\sin x=\square \tag{2.5}
\end{equation*}
$$

$$
\text { for each } \quad x \in \mathbb{R} \text {. }
$$

Example 3. Given the function $f(x)=\ln (1+x)$ with center $x_{0}=0$.

Helpful Table for Example 3			
n	$f^{(n)}(x)$	$f^{(n)}\left(x_{0}\right) \stackrel{\text { here }}{=} f^{(n)}(0)$	$c_{n} \stackrel{\text { def }}{=} \frac{f^{(n)}\left(x_{0}\right)}{n!} \stackrel{\text { here }}{=} \frac{f^{(n)}(0)}{n!}$
0	$\ln (1+x)$	$\ln (1+0)=0$	$\frac{0}{0!}=\frac{0}{1}=0$
1	$(1+x)^{-1}$	$(1+0)^{-1}=+1$	$\frac{1}{1!}=+1$
2	$-(1+x)^{-2}$	$-(1+0)^{-2}=-1$	$\frac{-1}{2!}=-\frac{1}{2}$
3	$+2(1+x)^{-3}$	${ }^{+2} 2(1+0)^{-3}=+2$	$\frac{2}{3!}=+\frac{1}{3}$
4	$-3!(1+x)^{-4}$	$-3!(1+0)^{-4}=-3!$	$\frac{-3!}{4!}=-\frac{1}{4}$
5	$+4!(1+x)^{-5}$	$+4!(1+0)^{-5}=+4!$	$\frac{4!}{5!}=+\frac{1}{5}$
6	$-5!(1+x)^{-6}$	$-5!(1+0)^{-6}=-5!$	$\frac{-5!}{6!}=-\frac{1}{6}$
\vdots	do next line later in ≈ 3.2		
n	when $n \geq 1: \quad(-1)^{n-1}(n-1)!(1+x)^{-n}$	$(-1)^{n-1}(n-1)!$	$\frac{(-1)^{n-1}(n-1)!}{n!}=\frac{(-1)^{n-1}}{n}$

3.1. Find the $N^{\text {th }}$-order Maclaurin polynomial of $f(x)=\ln (1+x)$ for $N=0,1,2,3,4$ and $N=7$.

Do not use \sum-sign.

$$
p_{0}(x)=\ldots \text {, cleaned up, } p_{0}(x)=
$$

$p_{1}(x)=$ \qquad , cleaned up, $p_{1}(x)=$ \qquad
$p_{2}(x)=$ \qquad , cleaned up, $p_{2}(x)=$ \qquad
Now let's just do the cleaned up version from the onset.
$p_{3}(x)=$ \qquad
$p_{4}(x)=$ \qquad
$p_{7}(x)=$ \qquad
3.2. Fill in the last row in the Helpful Table for Example 3.
3.3. What is the $n^{\text {th }}$ Maclaurin coefficient of $f(x)=\ln (1+x)$?

3.4. Express the $N^{\text {th }}$-order Maclaurin polynomial of $f(x)=\ln (1+x)$ in closed form (i.e., use \sum-sign).

When $N=0$ we get $p_{0}(x)=0$. And when $N=1,2,3,4, \ldots$, we have $p_{N}(x)=\square$, cleaned up, $p_{N}(x)=\square$
3.5. Find the Maclaurin series of $f(x)=\ln (1+x)$ Use closed form (i.e., use \sum-sign).
$P_{\infty}(x)=\square$,cleaned up, $P_{\infty}(x)=\square$
3.6. Remark. If we apply method of power series (the ratio/root test then check endpoints) then we would see the interval of convergence of the Maclaurin seris for $f(x)=\ln (1+x)$ is $(-1,1]$.
You should do this after class!

- Fact. The function $f(x)=\ln (1+x)$ is equal to it's Maclaurin series on the interval $x \in(-1,1]$. I.e.,

$$
\ln (1+x)=\square
$$

$$
\text { when } \quad x \in(-1,1]
$$

Pretty cool but hard to show for $x \in\left(-1,-\frac{1}{2}\right)$. So we'll just show it in the easier case that $x \in\left[-\frac{1}{4}, \frac{5}{8}\right]$.
3.7. Show that on the interval $\left[-\frac{1}{4}, \frac{5}{8}\right]$, the function $f(x)=\ln (1+x)$ is equal to it's Maclaurin series. I.e., show

$$
\begin{equation*}
\ln (1+x)=\square \tag{3.7}
\end{equation*}
$$

$$
\text { when } \quad-\frac{1}{4} \leq x \leq \frac{5}{8}
$$

