
§10.TS (§10.8-10) Taylor Polynomial/Series Lecture Examples

Setup. Given y = f (x) and x0 in an interval I. Know the derivatives of y = f(n)(x) exist for each x ∈ I and for each n ∈ N.

The N th-order Taylor polynomial for y = f(x) at x0 is:

pN (x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 + · · ·+ f (N)(x0)

N !
(x− x0)N , (open form)

which can also be written in open form as (recall that 0! = 1)

pN (x) =
f (0)(x0)

0!
+
f (1)(x0)

1!
(x−x0)+

f (2)(x0)

2!
(x−x0)2+· · ·+ f (n)(x0)

n!
(x−x0)n+· · ·+ f (N)(x0)

N !
(x−x0)N ,

which can also be written in closed form, by using sigma notation, as

pN (x) =
N∑
n=0

f (n)(x0)

n!
(x− x0)n . (closed form)

So y = pN (x) is a polynomial of degree at most N and it has the form

pN (x) =
N∑
n=0

cn (x− x0)n where the nth Taylor coefficients cn =
f (n)(x0)

n!
are

:::::::::
constants.

The cn is choosen so that f (n) (x0) = (pn)(n) (x0). Knowing y = PN (x), how can you find y = PN+1 (x)?

pN+1(x) =

N+1∑
n=0

cn (x−x0)n =

[
N∑
n=0

cn (x− x0)n
]

+
(
cN+1 (x− x0)N+1

)
= PN (x)+cN+1 (x−x0)N+1.

The Taylor series for y = f(x) at x0 is the power series:

P∞(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n + . . . (open form)

which can also be written as

P∞(x) =
f (0)(x0)

0!
+
f (1)(x0)

1!
(x−x0)+

f (2)(x0)

2!
(x−x0)2+· · ·+

f (n)(x0)

n!
(x−x0)n+. . . ←↩ the sum keeps on going and going.

The Taylor series can also be written in closed form, by using sigma notation, as

P∞(x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)n . (closed form)

The Maclaurin polynomial/series for y = f(x) is just the Taylor polynomial/series for y = f(x) at x0 = 0.

Example 1. Given the function f (x) = 1
1−x with center at x0 = 0.

Helpful Table for Example 1

n f (n)(x) f (n)(x0)
here
= f (n)(0) cn

def
= f (n)(x0)

n!
here
= f (n)(0)

n!

0 (1− x)−1 (1− 0)−1 = 1 1
0! = 1

1
note
= 0!

0! = 1

1 − (1− x)−2 (−1) = (1− x)−2 (1− 0)−2 = 1 1
1! = 1!

1! = 1

2 −2 (1− x)−3 (−1) = 2 (1− x)−3 2 (1− 0)−3 = 2 2
2! = 2!

2! = 1

3 2 (−3) (1− x)−4 (−1) = 3! (1− x)−4 3! (1− 0)−4 = 3! 3!
3! = 1

4 3! (−4) (1− x)−5 (−1) = 4! (1− x)−5 4! (1− 0)−5 = 4! 4!
4! = 1

5 4! (−5) (1− x)−6 (−1) = 5! (1− x)−6 5! (1− 0)−6 = 5! 5!
5! = 1

6 5! (−6) (1− x)−7 (−1) = 6! (1− x)−7 6! (1− 0)−7 = 6! 6!
6! = 1

...

n

Prof. Girardi, 19.03.31 Page 1 of 7 Infinite Series
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1.1. Find the N th-order Taylor polynomial of f (x) = 1
1−x centered at x0 = 0 for N = 0, 1, 2, 3, 4.

Do not use
∑

-sign.

p0 (x) = , cleaned up, p0 (x) =

p1 (x) = , cleaned up, p1 (x) =

p2 (x) = , cleaned up, p2 (x) =

p3 (x) = , cleaned up, p3 (x) =

p4 (x) = , cleaned up, p4 (x) =

1.2. Express the 4th-order Taylor polynomial of f (x) = 1
1−x centered at x0 = 0 in

:::::
closed form (i.e., with

∑
-sign).

p4 (x) = , cleaned up, p4 (x) =

1.3. Fill in the last row in the Helpful Table for Example 1.

1.4. What is the nth Taylor coefficient of f (x) = 1
1−x centered at x0 = 0?

cn = for n = 0, 1, 2, 3, 4, 5, . . . .

1.5. Express the N th-order Taylor polynomial of f (x) = 1
1−x centered at x0 = 0 in

::::::
closed

:::::
form (i.e., use

∑
-sign).

pN (x) = , cleaned up, pN (x) =

1.6. Find the Taylor series of f (x) = 1
1−x centered at x0 = 0. Use

::::::
closed

:::::
form (i.e., use

∑
-sign).

P∞ (x) = , cleaned up, P∞ (x) =

1.7. Express the Taylor series of f (x) = 1
1−x centered at x0 = 0 in

::::
open

::::::
form (i.e., use . . .-sign).

P∞ (x) =

or, by including the general term, we can also express as

P∞ (x) =
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1.8. Find the interval of convergence of the Taylor series of f (x) = 1
1−x centered at x0 = 0.

I. Aside. Let’s think about this example some more. We were given the center x0 = 0 and the function

f (x) =
1

1− x
.

Then we have computed the Taylor series P∞ as

P∞ (x) =

∞∑
n=0

xn . (1.1)

and showed that power series series in (1.1) converges when |x| < 1.

Recall that for the Geometric Series
∞∑
n=0

rn =
1

1− r
, which is valid when |r| < 1,

which we showed some time ago by considering the sn − rsn. Replacing r by x we get

1

1− x
=

∞∑
n=0

xn , which is valid when |x| < 1,

which gives that the function y = 1
1−x has a power series representation.

Theorem 1.1. Power series vs. Taylor series.

If a function y = f (x) has a power series representation about center x = x0 with radius of conv. R > 0,
then that power series representation is the Taylor series for y = f (x) about center x = x0.

I.e. (just going to repharse . . . )

If for some R > 0

f (x) =
∞∑
n=0

cn (x− x0)n , which is valid when |x− x0| < R (1.2)

then the cn’s must satisfy

cn =
f (n) (x0)

n!
and so the power series in (1.2) is the Taylor series of y = f (x) about the center x = x0.

To see why this Theorem is true, see the handout Power Series vs. Taylor Series.

Warning.
It is possible for a function not to be equal to it’s Taylor series, which as radius of convergence R > 0.
For such a function f , all its derivaties f (n) exist so you can (formally) write down it’s Taylor series.
But it’s Taylor series does not converge to the function f .
For an example of such a function, see the handout Power Series vs. Taylor Series.
In this example the center is x0 = 0 and the Taylor series is P∞ (x) = 0 for each x ∈ R.
But f (x) = 0 only when x is .
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Example 2. Given the function f (x) = sinx with center at x0 = π.

Helpful Table for Example 1

k 2k + 1 n f (n)(x) f (n)(x0)
here
= f (n)(π) cn

def
= f (n)(x0)

n!
here
= f (n)(π)

n!

0 sinx sinπ = 0 0
0! = 0

1 = 0

1 cosx cosπ = −1 −1
1! = −1

1 = −1

2 − sinx − sinπ = 0 0
2! = 0

3 − cosx − cosπ = − (−1) = 1 1
3! = + 1

3!

4 sinx sinπ = 0 0
4! = 0

5 cosx cosπ = −1 −1
5! = − 1

5!

6 − sinx − sinπ = 0 0
6! = 0

7 − cosx − cosπ = 1 1
7! = + 1

7!

I Note f (4) (x) = f (0) (x) so derivatives repeat/cycle in sets of 4.

2.1. Find the N th-order Taylor polynomial of f (x) = sinx centered at x0 = π for N = 0, 1, . . . , 8 and N = 11.
Do not use

∑
-sign.

p0 (x) = , cleaned up, p0 (x) =

p1 (x) = , cleaned up, p1 (x) =

p2 (x) = , cleaned up, p2 (x) =

Now let’s just do the cleaned up version from the onset.

p3 (x) =

p4 (x) =

p5 (x) =

p6 (x) =

p7 (x) =

p8 (x) =

p11 (x) =

I Why do we use the term N th
:::::
order Taylor polynomial instead of N th

::::::
degree Taylor polynomial?
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2.2. Express the Taylor series of f (x) = sinx centered at x0 = π in
::::
open

::::::
form (i.e., use . . .-sign).

P∞ (x) =

2.3. Find the Taylor series of f (x) = sinx centered at x0 = π. Use
::::::
closed

:::::
form (i.e., use

∑
-sign).

Hint: (−1)an even number = while (−1)an odd number = .

P∞ (x) = , or, P∞ (x) =

2.4. Find the interval of convergence and radius of conv. of the Taylor series of f (x) = sinx centered at x0 = π.

2.5. Time to recall one of the Commonly Used
::::::::::
Sequences. Let x ∈ R.

Show that

∞∑
n=1

xn

n!
is absolutely convergent (hint: ratio test). Conclude that lim

n→∞

xn

n!
= 0.

2.6. Show that f (x) = sinx is equal to it’s Taylor series centered at x0 = π for each x ∈ R. I.e., show that

sinx = for each x ∈ R. (2.5)

Prof. Girardi, 19.03.31 Page 5 of 7 Infinite Series



§10.TS (§10.8-10) Taylor Polynomial/Series Lecture Examples

Example 3. Given the function f (x) = ln (1 + x) with center x0 = 0.

Helpful Table for Example 3

n f (n)(x) f (n)(x0)
here
= f (n)(0) cn

def
= f (n)(x0)

n!
here
= f (n)(0)

n!

0 ln (1 + x) ln (1 + 0) = 0 0
0! = 0

1 = 0

1 (1 + x)−1 (1 + 0)−1 = +1 1
1! = +1

2 − (1 + x)−2 − (1 + 0)−2 = −1 −1
2! = −1

2

3 +2 (1 + x)−3 +2 (1 + 0)−3 = +2 2
3! = +1

3

4 −3! (1 + x)−4 −3! (1 + 0)−4 = −3! −3!
4! = −1

4

5 +4! (1 + x)−5 +4! (1 + 0)−5 = +4! 4!
5! = +1

5

6 −5! (1 + x)−6 −5! (1 + 0)−6 = −5! −5!
6! = −1

6

... do next line later in ≈ 3.2

n when n ≥ 1: (−1)n−1 (n− 1)! (1 + x)−n (−1)n−1 (n− 1)! (−1)n−1(n−1)!
n! = (−1)n−1

n

3.1. Find the N th-order Maclaurin polynomial of f (x) = ln (1 + x) for N = 0, 1, 2, 3, 4 and N = 7.
Do not use

∑
-sign.

p0 (x) = , cleaned up, p0 (x) =

p1 (x) = , cleaned up, p1 (x) =

p2 (x) = , cleaned up, p2 (x) =

Now let’s just do the cleaned up version from the onset.

p3 (x) =

p4 (x) =

p7 (x) =

3.2. Fill in the last row in the Helpful Table for Example 3.

3.3. What is the nth Maclaurin coefficient of f (x) = ln (1 + x)?

cn = for n = 1, 2, 3, 4, 5, . . . and c0 =
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3.4. Express the N th-order Maclaurin polynomial of f (x) = ln (1 + x) in
::::::
closed

:::::
form (i.e., use

∑
-sign).

When N = 0 we get p0 (x) = 0. And when N = 1, 2, 3, 4, . . . , we have

pN (x) = , cleaned up, pN (x) =

3.5. Find the Maclaurin series of f (x) = ln (1 + x) Use
::::::
closed

:::::
form (i.e., use

∑
-sign).

P∞ (x) = , cleaned up, P∞ (x) =

3.6. Remark. If we apply method of power series (the ratio/root test then check endpoints) then we would
see the interval of convergence of the Maclaurin seris for f (x) = ln (1 + x) is (−1, 1].
You should do this after class!

I. Fact. The function f (x) = ln (1 + x) is equal to it’s Maclaurin series on the interval x ∈ (−1, 1]. I.e.,

ln (1 + x) = when x ∈ (−1, 1]

Pretty cool but hard to show for x ∈
(
−1,−1

2

)
. So we’ll just show it in the easier case that x ∈

[
−1

4 ,
5
8

]
.

3.7. Show that on the interval
[
−1

4 ,
5
8

]
, the function f (x) = ln (1 + x) is equal to it’s Maclaurin series.

I.e., show

ln (1 + x) = when − 1

4
≤ x ≤ 5

8
(3.7)
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