Setup. Given y = f(x) and x_0 in an interval *I*. Know the derivatives of $y = f^{(n)}(x)$ exist for each $x \in I$ and for each $n \in \mathbb{N}$. The *N*th-order Taylor polynomial for y = f(x) at x_0 is:

$$p_N(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(N)}(x_0)}{N!}(x - x_0)^N , \qquad (\text{open form})$$

which can also be written in open form as (recall that 0! = 1)

$$p_N(x) = \frac{f^{(0)}(x_0)}{0!} + \frac{f^{(1)}(x_0)}{1!}(x - x_0) + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots + \frac{f^{(N)}(x_0)}{N!}(x - x_0)^N ,$$

which can also be written in <u>closed form</u>, by using sigma notation, as

$$p_N(x) = \sum_{n=0}^{N} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n .$$
 (closed form)

So $y = p_N(x)$ is a polynomial of degree at most N and it has the form

$$p_N(x) = \sum_{n=0}^{N} c_n (x - x_0)^n$$
 where the *n*th Taylor coefficients $c_n = \frac{f^{(n)}(x_0)}{n!}$ are constants.

The c_n is choosen so that $f^{(n)}(x_0) = (p_n)^{(n)}(x_0)$. Knowing $y = P_N(x)$, how can you find $y = P_{N+1}(x)$?

$$p_{N+1}(x) = \sum_{n=0}^{N+1} c_n (x-x_0)^n = \left[\sum_{n=0}^{N} c_n (x-x_0)^n \right] + \left(c_{N+1} (x-x_0)^{N+1} \right) = P_N(x) + c_{N+1} (x-x_0)^{N+1}.$$

The Taylor series for y = f(x) at x_0 is the power series:

$$P_{\infty}(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots$$
 (open form)

which can also be written as

 $P_{\infty}(x) = \frac{f^{(0)}(x_0)}{0!} + \frac{f^{(1)}(x_0)}{1!}(x - x_0) + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots \quad \Leftrightarrow \text{ the sum keeps on going and going.}$

The Taylor series can also be written in closed form, by using sigma notation, as

$$P_{\infty}(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n .$$
 (closed form)

The <u>Maclaurin polynomial/series</u> for y = f(x) is just the Taylor polynomial/series for y = f(x) at $x_0 = 0$. **Example 1.** Given the function $f(x) = \frac{1}{1-x}$ with center at $x_0 = 0$.

Helpful Table for Example 1				
n	$f^{(n)}(x)$	$f^{(n)}(x_0) \stackrel{\text{here}}{=} f^{(n)}(0)$	$c_n \stackrel{\text{def}}{=} \frac{f^{(n)}(x_0)}{n!} \stackrel{\text{here}}{=} \frac{f^{(n)}(0)}{n!}$	
0	$(1-x)^{-1}$	$(1-0)^{-1} = 1$	$\frac{1}{0!} = \frac{1}{1} \stackrel{\text{note}}{=} \frac{0!}{0!} = 1$	
1	$-(1-x)^{-2}(-1) = (1-x)^{-2}$	$(1-0)^{-2} = 1$	$\frac{1}{1!} = \frac{1!}{1!} = 1$	
2	$-2(1-x)^{-3}(-1) = 2(1-x)^{-3}$	$2(1-0)^{-3} = 2$	$\frac{2}{2!} = \frac{2!}{2!} = 1$	
3	$2(^{-3})(1-x)^{-4}(-1) = 3!(1-x)^{-4}$	$3! (1-0)^{-4} = 3!$	$\frac{3!}{3!} = 1$	
4	$3! (^{-}4) (1-x)^{-5} (-1) = 4! (1-x)^{-5}$	$4! (1-0)^{-5} = 4!$	$\frac{4!}{4!} = 1$	
5	$4! (-5) (1-x)^{-6} (-1) = 5! (1-x)^{-6}$	$5! (1-0)^{-6} = 5!$	$\frac{5!}{5!} = 1$	
6	$5! (^{-}6) (1-x)^{-7} (-1) = 6! (1-x)^{-7}$	$6! (1-0)^{-7} = 6!$	$\frac{6!}{6!} = 1$	
:				
n				

1.1. Find the Nth-order Taylor polynomial of $f(x) = \frac{1}{1-x}$ centered at $x_0 = 0$ for N = 0, 1, 2, 3, 4. Do not use Σ -sign.

$$p_4\left(x
ight) =$$
 , cleaned up, $p_4\left(x
ight) =$

1.3. Fill in the last row in the Helpful Table for Example 1.

1.4. What is the n^{th} Taylor coefficient of $f(x) = \frac{1}{1-x}$ centered at $x_0 = 0$?

$$c_n =$$
 for $n = 0, 1, 2, 3, 4, 5, \dots$

1.5. Express the Nth-order Taylor polynomial of $f(x) = \frac{1}{1-x}$ centered at $x_0 = 0$ in <u>closed form</u> (i.e., use Σ -sign).

$$p_{N}\left(x
ight)$$
 = , cleaned up, $p_{N}\left(x
ight)$ =

1.6. Find the Taylor series of $f(x) = \frac{1}{1-x}$ centered at $x_0 = 0$. Use <u>closed form</u> (i.e., use \sum -sign).

$$P_{\infty}\left(x
ight)$$
 = , cleaned up, $P_{\infty}\left(x
ight)$ =

1.7. Express the Taylor series of $f(x) = \frac{1}{1-x}$ centered at $x_0 = 0$ in <u>open form</u> (i.e., use ...-sign).

$$P_{\infty}\left(x\right) = _$$

or, by including the general term, we can also express as

 $P_{\infty}\left(x\right) = _$

1.8. Find the interval of convergence of the Taylor series of $f(x) = \frac{1}{1-x}$ centered at $x_0 = 0$.

▶. Aside. Let's think about this example some more. We were given the center $x_0 = 0$ and the function

$$f(x) = \frac{1}{1-x} \, .$$

Then we have computed the Taylor series P_{∞} as

$$P_{\infty}\left(x\right) = \sum_{n=0}^{\infty} x^{n} .$$

$$(1.1)$$

and showed that power series series in (1.1) converges when |x| < 1.

Recall that for the Geometric Series

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r} \quad \text{, which is valid when } |r| < 1,$$

which we showed some time ago by considering the $s_n - rs_n$. Replacing r by x we get

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \quad \text{, which is valid when} \quad |x| < 1,$$

which gives that the function $y = \frac{1}{1-x}$ has a power series representation.

Theorem 1.1. Power series vs. Taylor series.

If a function y = f(x) has a power series representation about center $x = x_0$ with radius of conv. R > 0, then that power series representation is the Taylor series for y = f(x) about center $x = x_0$.

I.e. (just going to repharse \dots)

If for some R > 0

$$f(x) = \sum_{n=0}^{\infty} c_n \left(x - x_0 \right)^n \quad \text{, which is valid when } |x - x_0| < R \tag{1.2}$$

then the c_n 's must satisfy

$$c_n = \frac{f^{(n)}(x_0)}{n!}$$

and so the power series in (1.2) is the Taylor series of y = f(x) about the center $x = x_0$.

To see why this Theorem is true, see the handout Power Series vs. Taylor Series.

Warning.

It is possible for a function not to be equal to it's Taylor series, which as radius of convergence R > 0. For such a function f, all its derivaties $f^{(n)}$ exist so you can (formally) write down it's Taylor series. But it's Taylor series does not converge to the function f. For an example of such a function, see the handout *Power Series vs. Taylor Series*. In this example the center is $x_0 = 0$ and the Taylor series is $P_{\infty}(x) = 0$ for each $x \in \mathbb{R}$. But f(x) = 0 only when x is ______.

Helpful Table for Example 1					
k	2k + 1	n	$f^{(n)}(x)$	$f^{(n)}(x_0) \stackrel{\text{here}}{=} f^{(n)}(\pi)$	$c_n \stackrel{\text{def}}{=} \frac{f^{(n)}(x_0)}{n!} \stackrel{\text{here}}{=} \frac{f^{(n)}(\pi)}{n!}$
		0	$\sin x$	$\sin \pi = 0$	$\frac{0}{0!} = \frac{0}{1} = 0$
		1	$\cos x$	$\cos \pi = -1$	$\frac{-1}{1!} = -\frac{1}{1} = -1$
		2	$-\sin x$	$-\sin\pi = 0$	$\frac{0}{2!} = 0$
		3	$-\cos x$	$-\cos \pi = -(-1) = 1$	$\frac{1}{3!} = +\frac{1}{3!}$
		4	$\sin x$	$\sin \pi = 0$	$\frac{0}{4!} = 0$
		5	$\cos x$	$\cos \pi = -1$	$\frac{-1}{5!} = -\frac{1}{5!}$
		6	$-\sin x$	$-\sin\pi = 0$	$\frac{0}{6!} = 0$
		7	$-\cos x$	$-\cos\pi = 1$	$\frac{1}{7!} = +\frac{1}{7!}$

Example 2. Given the function $f(x) = \sin x$ with center at $x_0 = \pi$.

- ▶ Note $f^{(4)}(x) = f^{(0)}(x)$ so derivatives repeat/cycle in sets of 4.
- **2.1.** Find the Nth-order Taylor polynomial of $f(x) = \sin x$ centered at $x_0 = \pi$ for N = 0, 1, ..., 8 and N = 11. Do not use Σ -sign.

$p_0\left(x\right) = _$, cleaned up, $p_0\left(x ight)$ =	
$p_1(x) = $, cleaned up, $p_1(x) = $	
$p_2(x) =$, cleaned up, $p_2(x) =$	
$p_3(x) = $		
$p_4(x) = _$		
$p_5(x) = $		
$p_6(x) = $		
$p_7(x) = $		
$p_8(x) =$		
$p_{11}(x) = $		
▶ Why do we use the term N^{th} order Taylor polynomial instead of N^{th} degree Taylor polynomial?		

2.2. Express the Taylor series of $f(x) = \sin x$ centered at $x_0 = \pi$ in <u>open form</u> (i.e., use ...-sign).

 $P_{\infty}\left(x\right) = _$

2.3. Find the Taylor series of $f(x) = \sin x$ centered at $x_0 = \pi$. Use <u>closed form</u> (i.e., use Σ -sign).

Hint:
$$(-1)^{\text{an even number}} = \underline{\qquad}$$
 while $(-1)^{\text{an odd number}} = \underline{\qquad}$.
 $P_{\infty}(x) = \boxed{\qquad}$, or, $P_{\infty}(x) = \boxed{\qquad}$

2.4. Find the interval of convergence and radius of conv. of the Taylor series of $f(x) = \sin x$ centered at $x_0 = \pi$.

2.5. Time to recall one of the Commonly Used Sequences. Let $x \in \mathbb{R}$.

Show that
$$\sum_{n=1}^{\infty} \frac{x^n}{n!}$$
 is absolutely convergent (hint: ratio test). Conclude that $\lim_{n \to \infty} \frac{x^n}{n!} = 0$

2.6. Show that $f(x) = \sin x$ is equal to it's Taylor series centered at $x_0 = \pi$ for each $x \in \mathbb{R}$. I.e., show that

$$\sin x =$$
 for each $x \in \mathbb{R}$. (2.5)

Helpful Table for Example 3				
n	$f^{(n)}(x)$	$f^{(n)}(x_0) \stackrel{\text{here}}{=} f^{(n)}(0)$	$c_n \stackrel{\text{def}}{=} \frac{f^{(n)}(x_0)}{n!} \stackrel{\text{here}}{=} \frac{f^{(n)}(0)}{n!}$	
0	$\ln\left(1+x\right)$	$\ln\left(1+0\right) = 0$	$\frac{0}{0!} = \frac{0}{1} = 0$	
1	$(1+x)^{-1}$	$(1+0)^{-1} = +1$	$\frac{1}{1!} = +1$	
2	$-(1+x)^{-2}$	$-(1+0)^{-2} = -1$	$\frac{-1}{2!} = -\frac{1}{2}$	
3	$+2(1+x)^{-3}$	$+2(1+0)^{-3} = +2$	$\frac{2}{3!} = +\frac{1}{3}$	
4	$-3!(1+x)^{-4}$	$^{-3!}(1+0)^{-4} = -3!$	$\frac{-3!}{4!} = -\frac{1}{4}$	
5	$+4!(1+x)^{-5}$	$+4!(1+0)^{-5} = +4!$	$\frac{4!}{5!} = +\frac{1}{5}$	
6	$-5!(1+x)^{-6}$	$-5! (1+0)^{-6} = -5!$	$\frac{-5!}{6!} = -\frac{1}{6}$	
:	do next line later in ≈ 3.2			
n	when $n \ge 1$: $(-1)^{n-1} (n-1)! (1+x)^{-n}$	$(-1)^{n-1}(n-1)!$	$\frac{(-1)^{n-1}(n-1)!}{n!} = \frac{(-1)^{n-1}}{n}$	

Example 3. Given the function $f(x) = \ln(1+x)$ with center $x_0 = 0$.

3.1. Find the Nth-order Maclaurin polynomial of $f(x) = \ln(1+x)$ for N = 0, 1, 2, 3, 4 and N = 7. Do not use \sum -sign.

	$p_0(x) = $, cleaned up, $p_0\left(x ight)$ =		
	$p_1(x) = $, cleaned up, $p_1\left(x ight)$ =		
	$p_2(x) =$	from the onset. $p_2(x) = $		
	$p_3(x) = $			
	$p_4(x) = _$			
	$p_7(x) = $			
3.2.	.2. Fill in the last row in the Helpful Table for Example 3.			
3.3.	3. What is the n^{th} Maclaurin coefficient of $f(x) = \ln (1+x)$?			
	$c_n =$ for $n = 1, 2, 3,$	$, 4, 5, \dots$ and $c_0 =$		

3.4. Express the Nth-order Maclaurin polynomial of $f(x) = \ln(1+x)$ in closed form (i.e., use Σ -sign). When N = 0 we get $p_0(x) = 0$. And when $N = 1, 2, 3, 4, \ldots$, we have

$$p_{N}\left(x
ight)$$
 = , cleaned up, $p_{N}\left(x
ight)$ =

3.5. Find the Maclaurin series of $f(x) = \ln(1+x)$ Use closed form (i.e., use \sum -sign).

$$P_{\infty}\left(x
ight)$$
 = , cleaned up, $P_{\infty}\left(x
ight)$ =

- **3.6.** Remark. If we apply method of power series (the ratio/root test then check endpoints) then we would see the interval of convergence of the Maclaurin series for $f(x) = \ln(1+x)$ is (-1, 1]. You should do this after class!
- ▶. Fact. The function $f(x) = \ln(1+x)$ is equal to it's Maclaurin series on the interval $x \in (-1, 1]$. I.e.,

$$\ln\left(1+x\right) =$$

when $x \in (-1, 1]$

Pretty cool but hard to show for $x \in (-1, -\frac{1}{2})$. So we'll just show it in the easier case that $x \in [-\frac{1}{4}, \frac{5}{8}]$. **3.7.** Show that on the interval $[-\frac{1}{4}, \frac{5}{8}]$, the function $f(x) = \ln(1+x)$ is equal to it's Maclaurin series.

$$\ln(1+x) =$$
 when $-\frac{1}{4} \le x \le \frac{5}{8}$ (3.7)