Homework 2. Find the equation $y=p_{1}(x)$ of the tangent line to the function $f(x)=\frac{1}{x}$ at the point $x_{0}=2$. Express your answer in the form $p_{1}(x)=d+m(x-2)$ for some constants $d \& m$.

Soln: $p_{1}(x)=\square$.

Homework 4. Find the second order Taylor polynomial $y=p_{2}(x)$ for $f(x)=\frac{1}{x}$ at $x_{0}=-2$. First fill in the Helpful Table for Homework 4. Then express your answer in the form

$$
p_{2}(x)=c_{0}+c_{1}\left(x-^{-} 2\right)+c_{2}\left(x-{ }^{-} 2\right)^{2} \text { or } p_{2}(x)=c_{0}+c_{1}(x+2)+c_{2}(x+2)^{2}
$$

for some constants c_{0}, c_{1}, c_{2}.

Helpful Table for Homework 4			
n	$f^{(n)}(x)$	$f^{(n)}\left(x_{0}\right) \stackrel{\text { here }}{=} f^{(n)}(-2)$	$c_{n} \stackrel{\text { def }}{=} \frac{f^{(n)}\left(x_{0}\right)}{n!} \stackrel{\text { here }}{=} \frac{f^{(n)}(-2)}{n!}$
0	$f^{(0)}(x) \stackrel{\text { def }}{=} f(x)=x^{-1}$		
1			
2			

Soln: $p_{2}(x)=\square$.

Homework 6. For the function $f(x)=\sin (3 x)$ from Example 5, find the Maclaurin polynomials: $y=p_{1}(x), y=p_{3}(x), y=p_{5}(x), y=p_{7}(x), y=p_{9}(x), y=p_{11}(x)$, and $y=p_{13}(x)$.
First fill out the Helpful Table and then indicate the Maclaurin polynomials in the Solution Table. We are looking for patterns so you may leave/express, e.g., 3^{5} as just 3^{5} rather than 243 and 5 ! as just 5 ! rather than 120 ; in short, you do not need a calculator.

Helpful Table for Homework 6			
n	$f^{(n)}(x)$	$f^{(n)}\left(x_{0}\right) \stackrel{\text { here }}{=} f^{(n)}(0)$	$c_{n} \stackrel{\text { def }}{=} \frac{f^{(n)}\left(x_{0}\right)}{n!} \stackrel{\text { here }}{=} \frac{f^{(n)}(0)}{n!}$
0	$\sin (3 x) \stackrel{\text { note }}{=}+3^{0} \sin (3 x)$	0	0
1	$3 \cos (3 x) \stackrel{\text { note }}{=}+3^{1} \cos (3 x)$	$+3^{1}$	$+\frac{3^{1}}{1!}$
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			

Solution Table for Homework 6	
n	$y=p_{n}(x)$
1	
3	
5	$p_{5}(x)=\frac{3^{1}}{1!} x^{1}-\frac{3^{3}}{3!} x^{3}+\frac{3^{5}}{5!} x^{5}$
7	
9	
11	
13	

Bonus problem. In Homework 6, what is the $4^{\text {th }}$-order Maclaurin polynomial?
Soln: $p_{4}(x)=\square$.

