Read this handout thoroughly and then do Homeworks: 2, 4, and 6.

Let's consider a function

$$y = f(x)$$

and fix a point x_0 in the domain of y = f(x). So the graph of y = f(x) goes through the point $(x_0, f(x_0))$.

The equation of the tangent line to the graph of y = f(x) at the point $(x_0, f(x_0))$ is found by:

$$y - y_1 = m(x - x_1)$$

$$y - f(x_0) = f'(x_0)(x - x_0)$$

$$y = f(x_0) + f'(x_0)(x - x_0) .$$

So the equation $y = p_1(x)$ of the tangent line to the graph of y = f(x) at the point $(x_0, f(x_0))$ is

$$p_1(x) = f(x_0) + f'(x_0)(x - x_0) . (1)$$

Recall that the function y = f(x) can be approximated locally near x_0 by this tangent line

$$y = p_1(x) .$$

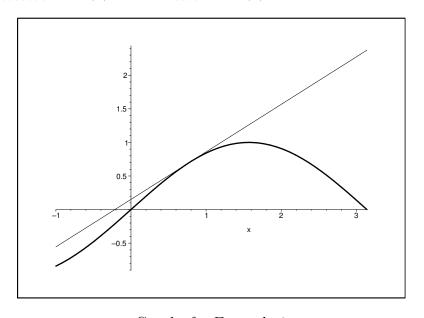
In other words, if x is close to x_0 then the value f(x) is close to the value $p_1(x)$, that is, if $x \approx x_0$ then $f(x) \approx p_1(x)$.

To better see what is going on pictorially/graphically, let's do an example.

Example 1. Near $x_0 = \frac{\pi}{4}$, the function $f(x) = \sin(x)$ can be approximated by the line

$$y = \sin\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{4}\right)\left(x - \frac{\pi}{4}\right)$$
$$p_1(x) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\left(x - \frac{\pi}{4}\right).$$

Let's graph the function y = f(x) and the line $y = p_1(x)$ on the same grid.



Graphs for Example 1

Homework 2. Find the equation $y = p_1(x)$ of the tangent line to the function $f(x) = \frac{1}{x}$ at the point $x_0 = 2$. Express your answer in the form $p_1(x) = d + m(x - 2)$ for some constants d & m.

Surely you easily knocked out Homework 2. Let's do it together, using ideas that will be helpful in problems-to-come. As we figured out in (1), the equation $y = p_1(x)$ of the tangent line to the graph of y = f(x) at the point $(x_0, f(x_0))$ is

$$p_1(x) = f(x_0) + f'(x_0)(x - x_0) .$$

Let's make a table of what is needed here. We will introduce some notation which will come in handy later.

Helpful Table for Homework 2			
n	$f^{(n)}(x)$	$f^{(n)}(x_0) \stackrel{\text{here}}{=} f^{(n)}(2)$	
0	$f^{(0)}(x) \stackrel{\text{def}}{=} f(x) = x^{-1}$	$f^{(0)}(2) = \frac{1}{2}$	
1	$f^{(1)}(x) \stackrel{\text{def}}{=} f'(x) = -x^{-2}$	$f^{(1)}(2) = -\frac{1}{4}$	

Using Helpful Table for Homework 2 and the equation (1), we get the following.

$$p_1(x) = \frac{1}{2} + \frac{-1}{4}(x-2) .$$
(2)

Note that (2) is the the reqested form $p_1(x) = d + m(x-2)$ where the constants $d = \frac{1}{2}$ and $m = \frac{-1}{4}$ so WE ARE DONE. It's not to hard to put our solution into the form y = mx + b so let's just do it for fun:

$$p_1(x) = \frac{1}{2} - \frac{x}{4} + \frac{1}{2}$$
 so $y = \frac{-1}{4}x + 1$.

Note that this tangent line approximation works well because the tangent line to the graph of y = f(x) at $(x_0, f(x_0))$ is the only line with slope $f'(x_0)$ passing through the point $(x_0, f(x_0))$. We can generalize this to second degree approximations by finding a parabola $y = ax^2 + bx + c$ passing through the point $(x_0, f(x_0))$ with the same slope (first derivative) as y = f(x) at x_0 and the same second derivative as y = f(x) at x_0 . We will illustrate how to find such a parabola in Example 3.

Example 3. Consider $f(x) = e^{-(x-1)}$ at $x_0 = 1$. We want to find a parabola $y = p_2(x)$ so that:

- 0. $p_2(1) = f(1)$ (so y = f(x) and $y = p_2(x)$ both pass thru the same point (1, f(1)))
 1. $p'_2(1) = f'(1)$ (so y = f(x) and $y = p_2(x)$ have the same first derivative at $x_0 = 1$)
- 2. $p_{2}''(1) = f''(1)$ (so y = f(x) and $y = p_{2}(x)$ have the same $\underbrace{\text{second}}_{}$ derivative at $x_{0} = 1$).

Such a parabola as we want looks like $p_2(x) = ax^2 + bx + c$ for some constants a, b, c with $a \neq 0$; as you will see, it's better to view as

$$p_2(x) = c_0 + c_1(x-1) + c_2(x-1)^2$$

for some carefully chosen **constants** c_0, c_1, c_2 with $c_2 \neq 0$. We just have to figure out how to carefully chose these constants c_0, c_1, c_2 . Let's see, we do have/know

$$p_2(x) = c_0 + c_1(x - 1) + c_2(x - 1)^2$$
 and $f(x) = e^{-(x - 1)}$
 $p'_2(x) = c_1 + 2c_2(x - 1)$ and $f'(x) = -e^{-(x - 1)}$
 $p''_2(x) = 2c_2$ and $f''(x) = +e^{-(x - 1)}$

and evaluating these at $x_0 = 1$ gives us

$$p_2(1) = c_0$$
 and $f(1) = e^{-(0)} = 1$
 $p'_2(1) = c_1$ and $f'(1) = -e^{-(0)} = -1$
 $p''_2(1) = 2c_2$ and $f''(1) = +e^{-(0)} = 1$

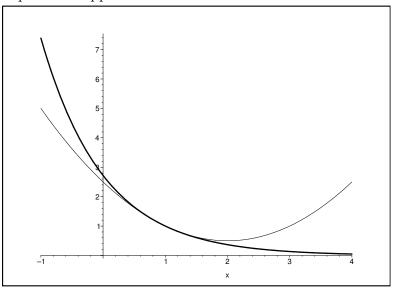
and so

$$p_2(1) = f(1)$$
 \Leftrightarrow $c_0 = 1$
 $p'_2(1) = f'(1)$ \Leftrightarrow $c_1 = -1$
 $p''_2(1) = f''(1)$ \Leftrightarrow $2c_2 = 1$ \Leftrightarrow $c_2 = \frac{1}{2}$.

So our parabola is

$$p_2(x) = 1 - (x - 1) + \frac{1}{2}(x - 1)^2.$$

This polynomial is the second order Taylor polynomial of $y = e^{-(x-1)}$ centered at $x_0 = 1$. Notice that close to x=1 this parabola approximates the function rather well.



Graphs for Example 3

Using Example 3 as a model we can give a general form of the second order Taylor polynomial for y = f(x) at x_0 , that is the parabola

$$p_2(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)^2$$

where we want to find the **constants** c_0, c_1, c_2 to make the derivatives of y = f(x) and $y = p_2(x)$ match up at $x = x_0$. We have

$$p_2(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)^2$$
 \Longrightarrow $p_2(x_0) = c_0$
 $p'_2(x) = c_1 + 2c_2(x - x_0)$ \Longrightarrow $p'_2(x_0) = c_1$
 $p''_2(x) = 2c_2$ \Longrightarrow $p''_2(x_0) = 2c_2$

and so

$$p_2(x_0) = f(x_0) \qquad \iff \qquad c_0 = f(x_0)$$

$$p'_2(x_0) = f'(x_0) \qquad \iff \qquad c_1 = f'(x_0)$$

$$p''_2(x_0) = f''(x_0) \qquad \iff \qquad 2c_2 = f''(x_0) \qquad \iff \qquad c_2 = \frac{f''(x_0)}{2}.$$

So our parablola is

$$p_2(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2.$$
(3)

Compare the function $y = p_1(x)$ in formula (1) with the function $y = p_2(x)$ in formula (3). Starting to see a pattern?

Homework 4. Find the second order Taylor polynomial $y = p_2(x)$ for $f(x) = \frac{1}{x}$ at $x_0 = -2$. First fill in the Helpful Table for Homework 4. Then express your answer in the form

$$p_2(x) = c_0 + c_1(x - 2) + c_2(x - 2)^2$$
 or $p_2(x) = c_0 + c_1(x + 2) + c_2(x + 2)^2$

for some constants c_0, c_1, c_2 .

	Helpful Table for Homework 4				
n	$f^{(n)}(x)$	$f^{(n)}(x_0) \stackrel{\text{here}}{=} f^{(n)}(-2)$	$c_n \stackrel{\text{def}}{=} \frac{f^{(n)}(x_0)}{n!} \stackrel{\text{here}}{=} \frac{f^{(n)}(-2)}{n!}$		
0	$f^{(0)}(x) \stackrel{\text{def}}{=} f(x) = x^{-1}$				
1					
2					

Soln:
$$p_2(x) =$$

Higher order Taylor polynomials are found in the same way. For example, the third order Taylor polynomial for a function y = f(x) centered at x_0 is

$$p_3(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3.$$

Big Definition. The Nth-order Taylor polynomial for y = f(x) at x_0 is:

$$p_N(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(N)}(x_0)}{N!}(x - x_0)^N ,$$

which can also be written as (recall that 0! = 1)

$$p_N(x) = \frac{f^{(0)}(x_0)}{0!} + \frac{f^{(1)}(x_0)}{1!}(x - x_0) + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(N)}(x_0)}{N!}(x - x_0)^N . \text{ (N - open form)}$$

Formula (N - open form) is in open form. It can also be written in closed form, by using sigma notation, as

$$p_N(x) = \sum_{n=0}^N \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
 (N- closed form)

So $y = p_N(x)$ is a polynomial of degree at most N and it has the form

$$p_N(x) = \sum_{n=0}^{N} c_n (x - x_0)^n$$

where the c_n 's

$$c_n = \frac{f^{(n)}(x_0)}{n!}$$

are specially chosen so that

$$p_N(x_0) = f(x_0)$$

$$p_N^{(1)}(x_0) = f^{(1)}(x_0)$$

$$p_N^{(2)}(x_0) = f^{(2)}(x_0)$$

$$\vdots$$

$$p_N^{(N)}(x_0) = f^{(N)}(x_0)$$

The constant c_n is called the $\underline{n^{\text{th}}}$ Taylor coefficient of y = f(x) about x_0 . The $\underline{N^{\text{th}}}$ -order Maclaurin polynomial for y = f(x) is just the N^{th} -order Taylor polynomial for y = f(x) at $x_0 = 0$ and so it is

$$p_N(x) = \sum_{n=0}^N \frac{f^{(n)}(0)}{n!} x^n.$$

Example 5. Consider the function

$$f(x) = \sin(3x)$$

near (centered) the point $x_0 = 0$. Let's graph, on the same grid, y = f(x) along with its Maclaurin polynomial $y = p_N(x)$ for N = 1, 3, 5, 7, 9, 11, 13.

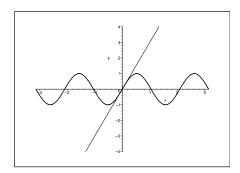


FIGURE 1. $y = \sin(3x)$ along with its first order Maclaurin Polynomial $y = p_1(x)$

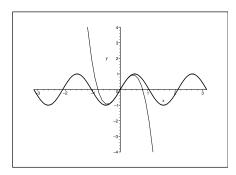


FIGURE 3. $y = \sin(3x)$ along with its third order Maclaurin Polynomial $y = p_3(x)$

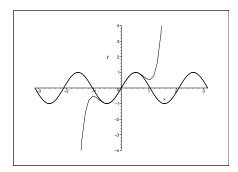


FIGURE 5. $y = \sin(3x)$ along with its fifth order Maclaurin Polynomial $y = p_5(x)$

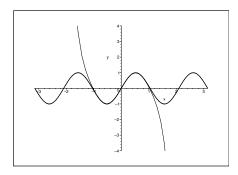


Figure 7. $y = \sin(3x)$ along with its 7th order Maclaurin Polynomial $y = p_7(x)$

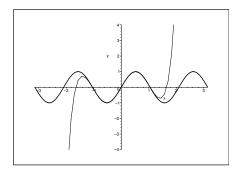


FIGURE 9. $y = \sin(3x)$ along with its 9th order Maclaurin Polynomial $y = p_9(x)$

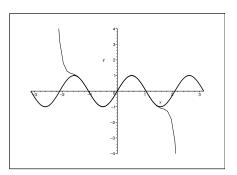


FIGURE 11. $y = \sin(3x)$ along with its 11th order Maclaurin Polynomial $y = p_{11}(x)$

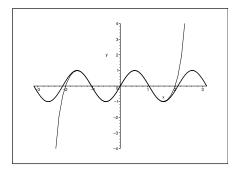


FIGURE 13. $y = \sin(3x)$ along with its 13th order Maclaurin Polynomial $y = p_{13}(x)$

Notice that as N increases the approximation of $y = \sin(3x)$ by $y = p_N(x)$ gets better and better, even over a wider and wider interval around the center $x_0 = 0$. So for a fixed x the approximation of y = f(x) by $y = p_N(x)$ becomes more accurate as N gets bigger.

Homework 6. For the function $f(x) = \sin(3x)$ from Example 5, find the Maclaurin polynomials: $y = p_1(x), y = p_3(x), y = p_5(x), y = p_7(x), y = p_9(x), y = p_{11}(x), \text{ and } y = p_{13}(x)$.

First fill out the Helpful Table and then indicate the Maclaurin polynomials in the Solution Table. We are looking for patterns so you may leave/express, e.g., 3⁵ as just 3⁵ rather than 243 and 5! as just 5! rather than 120; in short, you do not need a calculator.

	Helpful Table for Homework 6				
n	$f^{(n)}(x)$	$f^{(n)}(x_0) \stackrel{\text{here}}{=} f^{(n)}(0)$	$c_n \stackrel{\text{def}}{=} \frac{f^{(n)}(x_0)}{n!} \stackrel{\text{here}}{=} \frac{f^{(n)}(0)}{n!}$		
0	$\sin(3x) \stackrel{\text{note}}{=} +3^{\circ}\sin(3x)$	0	0		
1	$3\cos(3x) \stackrel{\text{note}}{=} +3^{1}\cos(3x)$	$+3^{1}$	$+\frac{3^1}{1!}=+3$		
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					

	Solution Table for Homework 6			
n	$y = p_n(x)$			
1				
3				
5	$p_5(x) = \frac{3^1}{1!}x^1 - \frac{3^3}{3!}x^3 + \frac{3^5}{5!}x^5$			
7				
9				
11				
13				

Just to think about. Take another look at Homework 6. Do you notice any pattern in the Taylor coefficients? Why did we only use odd-order Taylor polynomials?

Bonus problem. In Homework 6, what is the 4th-order Maclaurin polynomial?

Soln:
$$p_4(x) =$$