
Introduction to Taylor Polynomials

Read this handout thoroughly and then do Homeworks: 2, 4, and 6.

Let’s consider a function
y = f(x)

and fix a point x0 in the domain of y = f(x). So the graph of y = f(x) goes through the point

(x0, f(x0)) .

The equation of the tangent line to the graph of y = f(x) at the point (x0, f(x0)) is found by:

y − y1 = m(x− x1)
y − f(x0) = f ′(x0)(x− x0)

y = f(x0) + f ′(x0)(x− x0) .
So the equation y = p1(x) of the tangent line to the graph of y = f(x) at the point (x0, f(x0)) is

p1(x) = f(x0) + f ′(x0)(x− x0) . (1)

Recall that the
:::::::::
function y = f(x) can be approximated locally near x0 by this tangent

::::
line

y = p1(x) .

In other words, if x is close to x0 then the value f(x) is close to the value p1(x),
that is, if x ≈ x0 then f(x) ≈ p1(x).

To better see what is going on pictorially/graphically, let’s do an example.

Example 1. Near x0 = π
4
, the

:::::::::
function f(x) = sin(x) can be approximated by the

:::
line

y = sin
(π

4

)
+ cos

(π
4

)(
x− π

4

)
p1(x) =

√
2

2
+

√
2

2

(
x− π

4

)
.

Let’s graph the
:::::::::
function y = f(x) and the

::::
line y = p1(x) on the same grid.
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Graphs for Example 1

Homework 2. Find the equation y = p1 (x) of the tangent line to the function f(x) = 1
x

at the
point x0 = 2. Express your answer in the form p1 (x) = d+m (x− 2) for some constants d & m.
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Surely you easily knocked out Homework 2. Let’s do it together, using ideas that will be helpful
in problems-to-come. As we figured out in (1), the equation y = p1(x) of the tangent line to the
graph of y = f(x) at the point (x0, f(x0)) is

p1(x) = f(x0) + f ′(x0)(x− x0) .
Let’s make a table of what is needed here. We will introduce some notation which will come in
handy later.

Helpful Table for Homework 2

n f (n)(x) f (n)(x0)
here
= f (n)(2)

0 f (0)(x)
def
= f(x) = x−1 f (0)(2) = 1

2

1 f (1)(x)
def
= f ′(x) = − x−2 f (1)(2) = −1

4

Using Helpful Table for Homework 2 and the equation (1), we get the following.

p1(x) =
1

2
+
−1

4
(x− 2) . (2)

Note that (2) is the the reqested form p1 (x) = d + m (x− 2) where the constants d = 1
2

and

m = −1
4

so WE ARE DONE. It’s not to hard to put our solution into the form y = mx+ b so let’s
just do it for fun:

p1(x) =
1

2
− x

4
+

1

2
so y =

−1

4
x+ 1 .

Note that this tangent line approximation works well because the tangent line to the graph of
y = f(x) at (x0, f(x0)) is the only line with slope f ′(x0) passing through the point (x0, f(x0)). We
can generalize this to second degree approximations by finding a

:::::::::
parabola y = ax2 + bx+ c passing

through the point (x0, f(x0)) with the same slope (
::::
first

:::::::::::
derivative) as y = f(x) at x0 and the same

:::::::
second

:::::::::::
derivative as y = f(x) at x0. We will illustrate how to find such a parabola in Example 3.

Example 3. Consider f(x) = e−(x−1) at x0 = 1. We want to find a
:::::::::
parabola y = p2 (x) so that:

0. p2 (1) = f (1) (so y = f (x) and y = p2 (x) both pass thru the same point (1, f (1)) )

1. p′2 (1) = f ′ (1) (so y = f (x) and y = p2 (x) have the same
::::
first derivative at x0 = 1)

2. p′′2 (1) = f ′′ (1) (so y = f (x) and y = p2 (x) have the same
:::::::
second derivative at x0 = 1) .

Such a parabola as we want looks like p2 (x) = ax2 + bx+ c for some constants a, b, c with a 6= 0;
as you will see, it’s better to view as

p2(x) = c0 + c1(x− 1) + c2(x− 1)2

for some carefully chosen constants c0, c1, c2 with c2 6= 0. We just have to figure out how to
carefully chose these constants c0, c1, c2. Let’s see, we do have/know

p2(x) = c0 + c1(x− 1) + c2(x− 1)2 and f(x) = e−(x−1)

p′2(x) = c1 + 2c2(x− 1) and f ′(x) = –e−(x−1)

p′′2(x) = 2c2 and f ′′(x)= +e−(x−1)

and evaluating these at x0 = 1 gives us

p2(1) = c0 and f(1) = e−(0) = 1

p′2(1) = c1 and f ′(1) = –e−(0) = −1

p′′2(1) = 2c2 and f ′′(1) = +e−(0) = 1
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and so

p2(1) = f(1) ⇔ c0 = 1

p′2(1) = f ′(1) ⇔ c1 = −1

p′′2(1) = f ′′(1) ⇔ 2c2 = 1 ⇔ c2 = 1
2
.

So our parabola is

p2(x) = 1− (x− 1) +
1

2
(x− 1)2.

This polynomial is the second order Taylor polynomial of y = e−(x−1) centered at x0 = 1. Notice
that close to x=1 this parabola approximates the function rather well.
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Graphs for Example 3

Using Example 3 as a model we can give a general form of the second order Taylor polynomial
for y = f(x) at x0, that is the parabola

p2(x) = c0 + c1(x− x0) + c2(x− x0)2

where we want to find the constants c0, c1, c2 to make the derivatives of y = f(x) and y = p2(x)
match up at x = x0. We have

p2(x) = c0 + c1(x− x0) + c2(x− x0)2 =⇒ p2(x0) = c0

p′2(x) = c1 + 2c2(x− x0) =⇒ p′2(x0) = c1

p′′2(x) = 2c2 =⇒ p′′2(x0)= 2c2

and so

p2(x0) = f(x0) ⇐⇒ c0 = f(x0)

p′2(x0) = f ′(x0) ⇐⇒ c1 = f ′(x0)

p′′2(x0) = f ′′(x0) ⇐⇒ 2c2 = f ′′(x0) ⇐⇒ c2 = f ′′(x0)
2

.

So our parablola is

p2(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 . (3)

Compare the function y = p1(x) in formula (1) with the function y = p2(x) in formula (3).
Starting to see a pattern?
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Homework 4. Find the second order Taylor polynomial y = p2 (x) for f(x) = 1
x

at x0 = –2. First
fill in the Helpful Table for Homework 4. Then express your answer in the form

p2 (x) = c0 + c1(x−− 2) + c2(x−− 2)2 or p2 (x) = c0 + c1(x+ 2) + c2(x+ 2)2

for some constants c0, c1, c2.

Helpful Table for Homework 4

n f (n)(x) f (n)(x0)
here
= f (n)(−2) cn

def
= f (n)(x0)

n!

here
= f (n)(−2)

n!

0 f (0)(x)
def
= f(x) = x−1

1

2

Soln: p2 (x) = .

Higher order Taylor polynomials are found in the same way. For example, the third order
Taylor polynomial for a function y = f(x) centered at x0 is

p3(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 +

f ′′′(x0)

3!
(x− x0)3 .

Big Definition. The N th-order Taylor polynomial for y = f(x) at x0 is:

pN(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 + · · ·+ f (N)(x0)

N !
(x− x0)N ,

which can also be written as (recall that 0! = 1)

pN(x) =
f (0)(x0)

0!
+
f (1)(x0)

1!
(x−x0)+

f (2)(x0)

2!
(x−x0)2+· · ·+ f (N)(x0)

N !
(x−x0)N . (N - open form)

Formula (N - open form) is in open form. It can also be written in closed form, by using sigma
notation, as

pN(x) =
N∑
n=0

f (n)(x0)

n!
(x− x0)n . (N- closed form)

So y = pN(x) is a polynomial of degree at most N and it has the form

pN(x) =
N∑
n=0

cn (x− x0)n

where the cn’s

cn =
f (n)(x0)

n!
are specially chosen so that

pN(x0) = f(x0)

p
(1)
N (x0) = f (1)(x0)

p
(2)
N (x0) = f (2)(x0)

...

p
(N)
N (x0) = f (N)(x0) .
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The constant cn is called the nth Taylor coefficient of y = f(x) about x0.

The N th-order Maclaurin polynomial for y = f(x) is just

the N th-order Taylor polynomial for y = f(x) at x0 = 0 and so it is

pN(x) =
N∑
n=0

f (n)(0)

n!
xn .

�

Example 5. Consider the function
f (x) = sin(3x)

near (centered) the point x0 = 0. Let’s graph, on the same grid, y = f (x) along with its Maclaurin
polynomial y = pN(x) for N = 1, 3, 5, 7, 9, 11, 13.
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Figure 1. y = sin(3x) along with its first order Maclaurin Polynomial y = p1(x)
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Figure 3. y = sin(3x) along with its third order Maclaurin Polynomial y = p3(x)
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Figure 5. y = sin(3x) along with its fifth order Maclaurin Polynomial y = p5(x)

Prof. Girardi Page 5 of 7 Infinite Series



Introduction to Taylor Polynomials

–4

–3

–2

–1

0

1

2

3

4

y

–3 –2 –1 1 2 3

x

Figure 7. y = sin(3x) along with its 7th order Maclaurin Polynomial y = p7(x)
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Figure 9. y = sin(3x) along with its 9th order Maclaurin Polynomial y = p9(x)
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Figure 11. y = sin(3x) along with its 11th order Maclaurin Polynomial y = p11(x)
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Figure 13. y = sin(3x) along with its 13th order Maclaurin Polynomial y = p13(x)

Notice that as N increases the approximation of y = sin(3x) by y = pN(x) gets better and better,
even over a wider and wider interval around the center x0 = 0. So for a fixed x the approximation
of y = f(x) by y = pN(x) becomes more accurate as N gets bigger.
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Homework 6. For the function f (x) = sin(3x) from Example 5, find the Maclaurin polynomials:

y = p1(x), y = p3(x), y = p5(x), y = p7(x), y = p9(x), y = p11(x), and y = p13(x) .
First fill out the Helpful Table and then indicate the Maclaurin polynomials in the Solution Table.
We are looking for patterns so you may leave/express, e.g., 35 as just 35 rather than 243 and 5! as just 5! rather than 120; in short, you

do not need a calculator.

Helpful Table for Homework 6

n f (n)(x) f (n)(x0)
here
= f (n)(0) cn

def
= f (n)(x0)

n!

here
= f (n)(0)

n!

0 sin(3x)
note
= +30 sin(3x) 0 0

1 3 cos(3x)
note
= +31 cos(3x) +31 +31

1!
= +3

2

3

4

5

6

7

8

9

10

11

12

13

Solution Table for Homework 6

n y = pn(x)

1

3

5 p5(x) = 31

1!
x1 − 33

3!
x3 + 35

5!
x5

7

9

11

13

Just to think about. Take another look at Homework 6. Do you notice any pattern in the
Taylor coefficients? Why did we only use odd-order Taylor polynomials?

Bonus problem. In Homework 6, what is the 4th-order Maclaurin polynomial?

Soln: p4 (x) = .
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