SERIOUS SERIES' PROBLEMS

Determine whether each series converges absolutely, converges conditionally, or is divergent. Justify your answer.
(1) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
(2) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$
(3) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\ln (n+1)}$
(4) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n \sqrt{n^{2}+1}}$
(5) $\sum_{n=0}^{\infty} \frac{n+1}{n!}$
(6) $\sum_{n=0}^{\infty} \frac{(-3)^{n}}{n!}$
(7) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$
(8) $\sum_{n=1}^{\infty} \frac{(-1)^{n}\left(n^{2}+1\right)}{2 n^{2}+n-1}$
(9) $\sum_{n=1}^{\infty} \frac{2^{n} 3^{n}}{n^{n}}$
(10) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)(n+2)}}$
(11) $\sum_{n=1}^{\infty} \frac{1}{(3 n-2)^{n+(1 / 2)}}$
(12) $\sum_{n=1}^{\infty} \frac{\tan ^{-1} n}{n^{2}+1}$
(13) $\sum_{n=1}^{\infty} \frac{\ln (n!)}{n^{3}}$
(14) $\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{n} n \text { ! }}{(2 n)!}$
(15) $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{n}{n+1}\right)^{n}$

SERIOUS SERIES' PROBLEMS - hints

Below are just HINTS, without the needed justifications.
Recall that often there is more than one way to determine the behavior of a series.
abs. conv. - absolutely convergent
cond. conv. - conditionally convergent
divg. - divergent
AST - Alternating Series Test
CT - Comparison Test
LCT - Limit Comparison Test
(1) divg. $-p$-series with $p=\frac{1}{2}$
(2) cond. conv. - AST \& p-series with $p=\frac{1}{2}$
(3) cond. conv. - AST \& CT to $\frac{1}{n+1}$
(4) abs. conv. - LCT to $\frac{1}{n^{2}}$
(5) abs. conv. - ratio test $\rho=0$
(6) abs. conv. - ratio test $\rho=0$
(7) abs. conv. - integral test
(8) divg. $-n^{t h}$-term test for divergence
(9) abs. conv. - root test $\rho=0$
(10) abs. conv. - LCT to $\left(\frac{1}{n}\right)^{\frac{3}{2}}$
(11) abs. conv. - CT to $\frac{1}{(3 n-2)^{n}} \quad \& \quad$ do the root test to $\frac{1}{(3 n-2)^{n}}$
(12) abs. conv. - CT to $\frac{2}{n^{2}}$. note that $|\arctan n| \leq \frac{\pi}{2}$.
(13) abs. conv. - CT to $\left(\frac{1}{n}\right)^{\frac{3}{2}}$. note that
$\ln (n!)=\ln (1 \cdot 2 \cdots n)=\ln 1+\ln 2+\ldots \ln n \leq n \ln n$
and so for big n
$\frac{\ln (n!)}{n^{3}} \leq \frac{n \ln n}{n^{3}}=\frac{\ln n}{n^{2}} \leq \frac{n^{\frac{1}{2}}}{n^{2}}=\frac{1}{n^{\frac{3}{2}}}$
(14) abs. conv. - ratio test $\rho=0$
(15) divg. $-n^{\text {th }}$-term test for divergence. note that

$$
\left(\frac{n}{n+1}\right)^{n}=\left[\left(\frac{n+1}{n}\right)^{n}\right]^{-1}=\left[\left(1+\frac{1}{n}\right)^{n}\right]^{-1} \rightarrow\left[e^{1}\right]^{-1}=e^{-1} \neq 0 .
$$

