
SERIOUS SERIES’ PROBLEMS

Determine whether each series converges absolutely, converges conditionally, or is divergent.
Justify your answer.
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SERIOUS SERIES’ PROBLEMS – hints

Below are just HINTS, without the needed justifications.

Recall that often there is more than one way to determine the behavior of a series.

abs. conv. – absolutely convergent
cond. conv. – conditionally convergent
divg. – divergent

AST – Alternating Series Test
CT – Comparison Test
LCT – Limit Comparison Test

(1) divg. – p-series with p = 1
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(2) cond. conv. – AST & p-series with p = 1
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(3) cond. conv. – AST & CT to 1
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(4) abs. conv. – LCT to 1

n2

(5) abs. conv. – ratio test ρ = 0
(6) abs. conv. – ratio test ρ = 0
(7) abs. conv. – integral test
(8) divg. – n

th-term test for divergence
(9) abs. conv. – root test ρ = 0
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(14) abs. conv. – ratio test ρ = 0
(15) divg. – n
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