SERIOUS SERIES’ PROBLEMS

Determine whether each series converges absolutely, converges conditionally, or is divergent.
Justify your answer.
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SERIOUS SERIES’ PROBLEMS — HINTS

Below are just HINTS, without the needed justifications.
Recall that often there is more than one way to determine the behavior of a series.

abs. conv. — absolutely convergent
cond. conv. — conditionally convergent
divg. — divergent

AST — Alternating Series Test

CT — Comparison Test

LCT — Limit Comparison Test
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divg. — p-series with p = %
cond. conv. — AST & p-series with p = %
cond. conv. — AST & CT to n+r1
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(4) abs. conv. — LCT to -5

(5) abs. conv. — ratio test p =0

(6) abs. conv. — ratio test p =0

(7) abs. conv. — integral test

(8) divg. — n'h-term test for divergence

(9) abs. conv. — root test p =0
(10) abs. conv. — LCT to (%)%
(11) abs. conv. — CT to Gn_2)n i %) & do the root test to Gn_2)p
(12) abs. conv. — CT to -%. note that |arctann| < Z.
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s. conv. — CT to (%)% note that
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(14) abs. conv. — ratio test p =0

(15) divg. — n'h-term test for divergence. note that
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