
Lecture §10.2 Infinite Series Basics

exEB. Mr. Energizer Bunny is 1 mile from 5points and he starts hopping (and hopping and hopping).

He hops 1
2 mile on the first hop and then

on the next hop he hops half as far as he hopped on the previous hop.
(1EB)

Does he ever get to 5points in a finite amont of time? If not, how far (assuming he goes on forever) does he hop?

Soln. For n ∈ N, let

an = amount he hops on the nth hop

sn = total amount he has hopped after n hops.

We want to examine the
::::::::
sequence {sn}∞n=1 = {s1, s2, s3, s4, . . .}. From (1EB) we know

a1 =
1

2

for n > 1, an =
1

2
an−1 .

So

a1 =
1

2
=

(
1

2

)1

a2 =
1

2
a1 =

(
1

2

)2

a3 =
1

2
a2 =

(
1

2

)3

a4 =
1

2
a3 =

(
1

2

)4

...

an =

(
1

2

)n

for each n ∈ N

an+1

an
=

(
1
2

)n+1(
1
2

)n =
1

2
for each n ∈ N. (2EB)

So we want to examine the
::::::::
sequence {sn}∞n=1 where

sn = a1 + a2 + . . . + an =
n∑

k=1

ak =
n∑

k=1

(
1

2

)k

.

When sn =
n∑

k=1

rk for some fixed constant r,

cancellation heaven occurs when one computes sn − rsn
and we then can express sn without using a the

∑
-sign nor the . . . -sign.

I. Let’s see some cancellation heaven - in action.

sn =

(
1

2

)1

+

(
1

2

)2

+ . . . +

(
1

2

)n−1
+

(
1

2

)n

(
1

2

)
sn =

(
1

2

)2

+

(
1

2

)3

+ . . . +

(
1

2

)n

+

(
1

2

)n+1

Do you see the cancellation that would occur if we take sn −
(
1
2

)
sn ?
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Lecture §10.2 Infinite Series Basics

sn =

(
1

2

)1

+
�
�

��
(

1

2

)2

+ . . . +
�

�
�

��
(

1

2

)n−1
+

�
�

��
(

1

2

)n

↙ . . .↙ ↙(
1

2

)
sn =

�
�
��

(
1

2

)2

+
�
�

��
(

1

2

)3

+ . . . +
�

�
��

(
1

2

)n

+

(
1

2

)n+1

substract

1

2
sn

A©
= sn −

(
1

2

)
sn =

(
1

2

)1

−
(

1

2

)n+1

and so we can express sn, without using a the
∑

-sign nor the . . . -sign, as

sn =
1
2 −

(
1
2

)n+1

1
2

.

Since, for each n ∈ N

sn =
1
2 −

(
1
2

)n+1

1
2

�
1
2 − 0

1
2

= 1.

Next we compute limn→∞ sn:

sn =
1
2 −

(
1
2

)n+1

1
2

n→∞
−−−−−−−−−−−−−→

since
∣∣∣12 ∣∣∣<1

1
2 − 0

1
2

= 1 .

So limn→∞ sn = 1.
Thus Mr. Engergizer started 1 mile from 5points and

• in a finite amount of time, never quite reaches 5points (since sn < 1 for each n ∈ N)
• if he could go on hopping forever, he would hop 1 mile (since limn→∞ sn = 1)
• if give enough (but finite amt. of) time, he can get arbitararily close to 5point but not quite there.

Geometric Series

A geometric series (with ratio r ∈ R) is a series of the form∑
arn

where a ∈ R but a 6= 0. (Here, think of r and a as fixed numbers). A geometric series∑
rn is

{
convergent when |r| < 1

divergent when |r| ≥ 1 ;
(GeoSeries)

to show this, just find the nth partial sum sn of a geometric
:::::
series and use your

::::::::
sequence-knowledge that

lim
n→∞

rn


diverges to ∞ if r > 1

= 1 if r = 1

= 0 if |r| < 1

DNE if r ≤ −1 .

(GeoSeq)

How to detect a geometric series.

Let
∑

an be a series with an 6= 0 for each n. Then[∑
an is a geometric series with ratio r 6= 0

]
⇐⇒

[
an+1

an
= r for each n

]
.

Good old algebra shows this. Note if an+1

an
= r for n = 0, 1, 2, . . ., then an = rna0 for n = 0, 1, 2, . . . (see (2EB)).
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Lecture §10.2 Infinite Series Basics

Ex2. Determine if
∞∑

n=17

5
(−2)

n

32n+1

is a geometric series. If the series is a geometric series, then find its ratio.
Soln. The nth-term an and the (n + 1)st-term an+1 are (beware of algebra when finding an+1, common source of errors)

an = 5
(−2)

n

32n+1
=

5 (−2)
n

32n+1
and an+1 =

5 (−2)
n+1

32(n+1)+1
=

5 (−2)
n+1

32n+3
.

Let’s compute.

an+1

an
=

an+1

1

1

an
=

5 (−2)
n+1

32n+3

32n+1

5 (−2)
n

A©
=x︷ ︸︸ ︷

group together like terms

5

5

(−2)
n+1

(−2)
n

32n+1

32n+3

A©
=

(−2)
1

32
=
−2

9
.

Thus
∑

5 (−2)n

32n+1 is a geometric series with ratio r = −2
9 .

Ex3. Consider the series
∑∞

n=17
5 (−2)n

32n+1 from Example 2 along with its partial sums

sn:=

n∑
k=17

5 (−2)
k

32k+1
for n ≥ 17 .

3.1. Express sn without using a . . .-sign or
∑

-sign. 3.3. Determine if the series converges or diverges.
3.2. Find limn→∞ sn, if the limit exists. 3.4. If the series converges, find its sum.

Soln. From our calculations in Example 2, we already know that the series is a geometric series with ratio r = −2
9 ;

hence, since |r| < 1, we know the series converges (thus we have anwered question 3.3) and the series must be of

the (simplified) form
∑

an =
∑

arn =
∑

a
(−2

9

)n
for some constant a. To find this simplified form, we manipulate

an to make it look like arn:

an =
5 (−2)

n

32n+1
=

5 (−2)
n

3 (32)
n =

5

3

(
−2

9

)n

;

thus,
∞∑

n=17

5 (−2)
n

32n+1
=

∞∑
n=17

5

3

(
−2

9

)n

and sn =

n∑
k=17

5

3

(
−2

9

)k
A©
=

5

3

n∑
k=17

(
−2

9

)k

.

As in Example 1, let’s find an expression for sn − rsn, which results in a cancellation heaven.

sn =
5

3

[ (
−2

9

)17

+
�

�
�
��(

−2

9

)18

+ . . . +
���

��(
−2

9

)n−1

+
�

�
�
�(

−2

9

)n ]
↙ . . .↙ ↙(

−2

9

)
sn =

5

3

[
�

�
�

��(
−2

9

)18

+
�

�
�
��(

−2

9

)19

+ . . . +
�

�
�
�(

−2

9

)n

+

(
−2

9

)n+1 ]
substract(

1−
(−2

9

))
sn

A©
= sn −

(
−2

9

)
sn =

5

3

[ (
−2

9

)17

−
(
−2

9

)n+1]
and so

sn
A©
=

5
3

[(−2
9

)17 −
(−2

9

)n+1
]

1−
(−2

9

) A©
=

5
3

[(−2
9

)17 −
(−2

9

)n+1
]

11
9

A©
=

9

11
· 5

3

[(
−2

9

)17

−
(
−2

9

)n+1
]

n→∞−−−−→x︷ ︸︸ ︷
for r = −2

9 , limn→∞ rn = 0 since |r| < 1
see (GeoSeq)

9

11

5

3

[(
−2

9

)17

− 0

]
A©
=

15

11

(
−2

9

)17

. (3ans)

Note that (3ans) contains the answers since

∞∑
n=17

an = lim
n→∞

(a17 + a18 + . . . + an) = lim
n→∞

sn.
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Lecture §10.2 Infinite Series Basics

3.1. sn = 9
11 ·

5
3

[(−2
9

)17 −
(−2

9

)n+1
]
.

3.2. limn→∞ sn = 15
11

(−2
9

)17
.

3.3. Since the
:::::::
sequence of partial sums {sn} converges, the

:::::
series

∑
an converges.

3.4.
∑∞

n=17
5 (−2)n

32n+1 = 15
11

(−2
9

)17

Telescoping Series

Problem. We are given a specific series
∑∞

n=1 an and we want to find its sum.

Goal. Find a formula (without using a . . .-sign or
∑

-sign) for sn so we can easily compute limn→∞ sn where

sn = a1 + a2 + . . . + an =

n∑
k=1

ak and so

∞∑
n=1

an = lim
n→∞

sn

provided the limit exists.

• For a geometric series
∑

arn we can find a formula (without a . . .-sign or
∑

-sign) for sn − rsn, which has

naturally present cancellations, and then we just used simple algebra to solve for sn.

• Now we consider a telescoping series where such a formula (without a . . .-sign or
∑

-sign) for sn can be

found directly from taking advantage of naturally present cancellations within sn itself.

Ex4. Determine the behavior of the series

∞∑
n=1

(
1

n
− 1

n + 1

)

Check one box, and if you check the first box then fill in its blank. Justify your answer.

The series converges to a finite number, in which case
∑∞

n=1

(
1
n −

1
n+1

)
=

The series diverges to ∞, and so we write
∑∞

n=1

(
1
n −

1
n+1

)
=∞

The series diverges to −∞, and so we write
∑∞

n=1

(
1
n −

1
n+1

)
= −∞

The series diverges but does not diverge to ±∞, i.e.
∑∞

n=1

(
1
n −

1
n+1

)
DNE.

Soln. Let an =
(

1
n −

1
n+1

)
and sn =

∑n
k=1 ak. Thus we want to consider limn→∞ sn where

sn =

n∑
k=1

(
1

k
− 1

k + 1

)
=

(
1

1
− 1

2

)
︸ ︷︷ ︸
k=1 term

+

(
1

2
− 1

3

)
︸ ︷︷ ︸
k=2 term

+

(
1

3
− 1

4

)
︸ ︷︷ ︸
k=3 term

+ . . . +

(
1

n− 1
− 1

n

)
︸ ︷︷ ︸

k=n−1 term

+

(
1

n
− 1

n + 1

)
︸ ︷︷ ︸

k=n term

.

Do you see some natural cancellation in the . . .-formulation of sn? If not, perhaps rewriting sn will help.

sn =

(
1 +
−1

2x

)
+

(
1

2x
+
−1

3x

)
+

(
1

3x
+
−1

4x

)
+ . . . +

(
1

n− 1x
+
−1

nx

)
+

(
1

nx
+
−1

n + 1

)
.

cancel cancel cancel . . . cancel cancel
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Or perhaps you can see the natural cancellation viewing as sn as

sn = 1 +
�
��−1

2
! k = 1 term

↙

+
�
��+1

2
+
�
��−1

3
! k = 2 term

↙

+
�
��+1

3
+
�
��−1

4
! k = 3 term

...↙

+
�
�
�+1

n− 1
+
�
��−1

n
! k = n− 1 term

↙

+
�
��+1

n
+
−1

n + 1
! k = n term .

Either viewpoint leads to

sn = 1 +
−1

n + 1

n→∞−−−−−−−−−−−→ 1 + 0 = 1 .

Thus the answer is:

x The series
∑(

1
n −

1
n+1

)
converges to a finite number and

∑∞
n=1

(
1
n −

1
n+1

)
= 1 .

Ex5. Determine the behavior of the series
∞∑

n=1

1

n(n + 1)

Check one box, and if you check the first box then fill in its blank. Justify your answer.

The series converges to a finite number, in which case
∑∞

n=1
1

n(n+1) =

The series diverges to ∞, and so we write
∑∞

n=1
1

n(n+1) =∞
The series diverges to −∞, and so we write

∑∞
n=1

1
n(n+1) = −∞

The series diverges but does not diverge to ±∞, i.e.
∑∞

n=1
1

n(n+1) DNE.

Soln. Solving the Partial Fractions Decomposition

1

n(n + 1)
=

A

n
+

B

n + 1

leads to
1

n(n + 1)
=

1

n
+
−1

n + 1
.

Thus
∞∑

n=1

1

n(n + 1)
=

∞∑
n+1

(
1

n
− 1

n + 1

)
;

i.e., this Example 5 is just the previous Example 4 in disguise. So the answer is:

x The series
∑

1
n(n+1) converges to a finite number and

∑∞
n=1

1
n(n+1) = 1 .

Note that our Example 5 is the textbook’s Example 5 on pages 587–588.
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Ex6. After class, get out a pencil and try this example.

Determine the behavior of the series
∞∑

n=1

2

n(n + 2)

Check one box, and if you check the first box then fill in its blank. Justify your answer.

The series converges to a finite number, in which case
∑∞

n=1
2

n(n+2) =

The series diverges to ∞, and so we write
∑∞

n=1
2

n(n+2) =∞
The series diverges to −∞, and so we write

∑∞
n=1

2
n(n+2) = −∞

The series diverges but does not diverge to ±∞, i.e.
∑∞

n=1
2

n(n+2) DNE.

Soln. Let an = 2
n(n+2) and sn =

∑n
k=1 ak. Thus we want to consider limn→∞ sn. Solving the Partial Fractions

Decomposition
2

n(n + 2)
=

A

n
+

B

n + 2

leads to
2

n(n + 2)
=

1

n
+
−1

n + 2
.

Thus sn takes the form

sn =

n∑
k=1

(
1

k
+
−1

k + 2

)
=

(
1

1
+
−1

3

)
︸ ︷︷ ︸

k=1 term

+

(
1

2
+
−1

4

)
︸ ︷︷ ︸

k=2 term

+

(
1

3
+
−1

5

)
︸ ︷︷ ︸

k=3 term

+

(
1

4
+
−1

6

)
︸ ︷︷ ︸

k=4 term

+ . . . +

(
1

n− 1
+
−1

n + 1

)
︸ ︷︷ ︸

k=n−1 term

+

(
1

n
+
−1

n + 2

)
︸ ︷︷ ︸

k=n term

.

The natural cancellation going on is kinda hard to see so let’s rewrite sn. Since the denominators n and n+ 2 differ

by 2, we will write 2 terms per line (compare with Example 4, where the denominators n and n + 1 differed by 1

and so we wrote 1 term per line).

sn =
+1

1
+
−1

3
+

+1

2
+
−1

4
! k = 1 and k = 2 terms

+
+1

3
+
−1

5
+

+1

4
+
−1

6
! k = 3 and k = 4 terms

+
+1

5
+
−1

7
+

+1

6
+
−1

8
! k = 5 and k = 6 terms

+
+1

7
+
−1

9
+

+1

8
+
−1

10
! k = 7 and k = 8 terms

...

+
+1

n− 3
+
−1

n− 1
+

+1

n− 2
+
−1

n
! k = n− 3 and k = n− 2 terms

+
+1

n− 1
+
−1

n + 1
+

+1

n
+
−1

n + 2
! k = n− 1 and k = n terms .

Now the natural cancellation is clearer; indeed,
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sn =
+1

1
+
�
��−1

3
+

+1

2
+
�
��−1

4
! k = 1 and k = 2 terms

1©
↙

2©
↙

+
�
��+1

3
+
�
��−1

5
+
�
��+1

4
+
�
��−1

6
! k = 3 and k = 4 terms

3©
↙

4©
↙

+
�
��+1

5
+
�
��−1

7
+
�
��+1

6
+
�
��−1

8
! k = 5 and k = 6 terms

5©
↙

6©
↙

+
�
��+1

7
+
�
��−1

9
+
�
��+1

8
+
�
��−1

10
! k = 7 and k = 8 terms

...
7©
↙

8©
↙

+
�
�
�+1

n− 3
+
�
�
�−1

n− 1
+
�
�
�+1

n− 2
+
�
��−1

n
! k = n− 3 and k = n− 2 terms

↙ ↙

+
�
�
�+1

n− 1
+
−1

n + 1
+
�
��+1

n
+
−1

n + 2
! k = n− 1 and k = n terms .

Thus we have

sn = 1 +
1

2
+
−1

n + 1
+
−1

n + 2

n→∞−−−−−−−−−−−→ 1 +
1

2
+ 0 + 0 =

3

2
.

Thus the answer is:

x The series
∑

2
n(n+2) converges to a finite number and

∑∞
n=1

2
n(n+2) = 3

2 .

nth-term test for divergence: If limn→∞ an 6= 0, then
∑

an diverges.

Observation: Let
∑

an converges, say
∑∞

n=1 an = 17. What can you say about an?

Well an =
∑n

k=1 ak −
∑n−1

k=1 ak = sn − sn−1
n→∞−−−−→ 17− 17 = 0.

So have: If
∑

an converges, then limn→∞ an = 0.

get the Test: If limn→∞ an 6= 0 (which includes the possiblity that limn→∞ an DNE), then
∑

an diverges.

Warning: If limn→∞ an = 0, then it is possible that
∑

an converges and it is possible that
∑

an diverges.

for example: We know 1
2n

n→∞−−−−→ 0 and
∑∞

n=1
1

2n = 1 We know 1
n

n→∞−−−−→ 0 and we will show
∑∞

n=1
1
n =∞.

Remark: The nth-term test (for divergence) can show divergence but can NOT show convergence.

Ex7. Determine the behavior of the series

∞∑
n=1

3n2

5n2 + 1

Soln. Note

lim
n→∞

3n2

5n2 + 1
= lim

n→∞

3n2

n2

5n2+1
n2

lim
n→∞

3

5 + 1
n2

=
3

5
6= 0 .

So by the nth-term test (for divergence), the series
∑∞

n=1
3n2

5n2+1 diverges.
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Algebraic Properties

Since the convergence of a
::::
series is really just the convergence of its

::::::::
sequence of partial sums,

the algebraic properties that hold for sequences also hold for series.

Algebraic Properies of Series

Let
∑

an and
∑

bn both converge. Then∑
(an + bn) =

(∑
an

)
+
(∑

bn

)
∑

(an − bn) =
(∑

an

)
−
(∑

bn

)
∑

(k an) = k
(∑

an

)
where k is any constant.

Note that these Algebraic Properies of Series imply the following.

Corollary to the Algebraic Properies of Series

Let
∑

cn ::::::::
converges and

∑
dn :::::::

diverges. ∑
(cn + dn) diverges∑
(cn − dn) diverges∑

(k dn)

where k is any constant.

Let’s see why the first one holds. Let
∑

cn ::::::::
converges and

∑
dn:::::::

diverges. We know that
∑

(cn + dn) either converges

or diverges. Assume that
∑

(cn + dn) converges. Then by the Algebraic Properies of Series we would have that∑
((cn + dn)− cn)

note
=
∑

dn converges.

But we know that
∑

dn diverges. A contradiction! So our assumption that
∑

(cn + dn) converges cannot hold. So∑
(cn + dn) must diverge.

Positive Termed Series

Let
∑

an is a positive termed series (which just means that each term an ≥ 0). Then sn ≤ sn+1 and so the the

sequence {sn}n is ↗, i.e., is nondecreasing and so

• EITHER {sn}n converges (to some finite number), in which case
∑

an converges and
∑∞

n=1 an = limn→∞ sn

• OR {sn}n diverges to ∞, in which case
∑

an diverges to ∞ and
∑∞

n=1 an = limn→∞ sn =∞
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