exEB. Mr. Energizer Bunny is 1 mile from 5points and he starts hopping (and hopping and hopping).
He hops $\frac{1}{2}$ mile on the first hop and then
on the next hop he hops half as far as he hopped on the previous hop.
Does he ever get to 5points in a finite amont of time? If not, how far (assuming he goes on forever) does he hop?
Soln. For $n \in \mathbb{N}$, let

$$
\begin{aligned}
& a_{n}=\text { amount he hops on the } n^{\text {th }} \text { hop } \\
& s_{n}=\text { total amount he has hopped after } n \text { hops. }
\end{aligned}
$$

We want to examine the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}=\left\{s_{1}, s_{2}, s_{3}, s_{4}, \ldots\right\}$. From (1EB) we know

$$
\begin{aligned}
a_{1} & =\frac{1}{2} \\
\text { for } n>1, \quad a_{n} & =\frac{1}{2} a_{n-1} .
\end{aligned}
$$

So

$$
\begin{align*}
& a_{1}=\frac{1}{2} \\
& a_{2}==\left(\frac{1}{2}\right)^{1} \\
& a_{3}=\left(\frac{1}{2}\right)^{2} \\
& a_{3}=\frac{1}{2} a_{2}=\left(\frac{1}{2}\right)^{3} \\
& a_{4}= \frac{1}{2} a_{3}=\left(\frac{1}{2}\right)^{4} \\
& \vdots \\
&=\left(\frac{1}{2}\right)^{n} \quad \text { for each } n \in \mathbb{N} \tag{2EB}\\
& a_{n} \\
& \frac{a_{n+1}}{a_{n}}=\frac{\left(\frac{1}{2}\right)^{n+1}}{\left(\frac{1}{2}\right)^{n}}=\frac{1}{2} \quad \text { for each } n \in \mathbb{N} .
\end{align*}
$$

So we want to examine the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ where

$$
s_{n}=a_{1}+a_{2}+\ldots+a_{n}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n}\left(\frac{1}{2}\right)^{k}
$$

$$
\text { When } s_{n}=\sum_{k=1}^{n} r^{k} \text { for some fixed constant } r
$$

cancellation heaven occurs when one computes $s_{n}-r s_{n}$
and we then can express s_{n} without using a the \sum-sign nor the \ldots-sign.

- Let's see some cancellation heaven - in action.

$$
\begin{aligned}
s_{n} & =\left(\frac{1}{2}\right)^{1}+\left(\frac{1}{2}\right)^{2}+\ldots+\left(\frac{1}{2}\right)^{n-1}+\left(\frac{1}{2}\right)^{n} \\
\left(\frac{1}{2}\right) s_{n} & =\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\ldots+\left(\frac{1}{2}\right)^{n}+\left(\frac{1}{2}\right)^{n+1}
\end{aligned}
$$

Do you see the cancellation that would occur if we take $s_{n}-\left(\frac{1}{2}\right) s_{n}$?

$$
\begin{aligned}
s_{n} & =\left(\frac{1}{2}\right)^{1}+\left(\frac{1}{2}\right)^{\not 2}+\ldots+\left(\frac{1}{2}\right)^{n-1}+\left(\frac{1}{2}\right)^{\npreceq} \\
\left(\frac{1}{2}\right) s_{n} & =\left(\frac{1}{2}\right)^{\not 2}+\left(\frac{1}{2}\right)^{\npreceq}+\ldots+\left(\frac{1}{2}\right)^{\swarrow<}+\left(\frac{1}{2}\right)^{n+1}
\end{aligned}
$$

substract

$$
\frac{1}{2} s_{n} \stackrel{(A)}{=} s_{n}-\left(\frac{1}{2}\right) s_{n}=\left(\frac{1}{2}\right)^{1} \quad-\left(\frac{1}{2}\right)^{n+1}
$$

and so we can express s_{n}, without using a the \sum-sign nor the \ldots-sign, as

$$
s_{n}=\frac{\frac{1}{2}-\left(\frac{1}{2}\right)^{n+1}}{\frac{1}{2}}
$$

Since, for each $n \in \mathbb{N}$

$$
s_{n}=\frac{\frac{1}{2}-\left(\frac{1}{2}\right)^{n+1}}{\frac{1}{2}} \nsupseteq \frac{\frac{1}{2}-0}{\frac{1}{2}}=1 .
$$

Next we compute $\lim _{n \rightarrow \infty} s_{n}$:

$$
s_{n}=\frac{\frac{1}{2}-\left(\frac{1}{2}\right)^{n+1}}{\frac{1}{2}} \quad \frac{n \rightarrow \infty}{\text { since }\left|\frac{1}{2}\right|<1} \quad \frac{\frac{1}{2}-0}{\frac{1}{2}}=1
$$

So $\lim _{n \rightarrow \infty} s_{n}=1$.
Thus Mr. Engergizer started 1 mile from 5points and

- in a finite amount of time, never quite reaches 5points (since $s_{n}<1$ for each $n \in \mathbb{N}$)
- if he could go on hopping forever, he would hop 1 mile (since $\lim _{n \rightarrow \infty} s_{n}=1$)
- if give enough (but finite amt. of) time, he can get arbitararily close to 5 point but not quite there.

Geometric Series

A geometric series (with ratio $r \in \mathbb{R}$) is a series of the form

$$
\sum a r^{n}
$$

where $a \in R$ but $a \neq 0$. (Here, think of r and a as fixed numbers). A geometric series

$$
\sum r^{n} \text { is } \begin{cases}\text { convergent } & \text { when }|r|<1 \tag{GeoSeries}\\ \text { divergent } & \text { when }|r| \geq 1 ;\end{cases}
$$

to show this, just find the $n^{\text {th }}$ partial sum s_{n} of a geometric series and use your sequence-knowledge that

$$
\lim _{n \rightarrow \infty} r^{n} \begin{cases}\text { diverges to } \infty & \text { if } r>1 \tag{GeoSeq}\\ =1 & \text { if } r=1 \\ =0 & \text { if }|r|<1 \\ \text { DNE } & \text { if } r \leq-1\end{cases}
$$

How to detect a geometric series.

Let $\sum a_{n}$ be a series with $a_{n} \neq 0$ for each n. Then

$$
\left[\sum a_{n} \text { is a geometric series with ratio } r \neq 0\right] \Longleftrightarrow\left[\frac{a_{n+1}}{a_{n}}=r \text { for each } n\right]
$$

Good old algebra shows this. Note if $\frac{a_{n+1}}{a_{n}}=r$ for $n=0,1,2, \ldots$, then $a_{n}=r^{n} a_{0}$ for $n=0,1,2, \ldots$ (see (2EB)).

Ex2. Determine if

$$
\sum_{n=17}^{\infty} 5 \frac{(-2)^{n}}{3^{2 n+1}}
$$

is a geometric series. If the series is a geometric series, then find its ratio.
Soln. The $n^{\text {th }}$-term a_{n} and the $(n+1)^{\text {st }}$-term a_{n+1} are (beware of algebra when finding a_{n+1}, common source of errors)

$$
a_{n}=5 \frac{(-2)^{n}}{3^{2 n+1}}=\frac{5(-2)^{n}}{3^{2 n+1}} \quad \text { and } \quad a_{n+1}=\frac{5(-2)^{n+1}}{3^{2(n+1)+1}}=\frac{5(-2)^{n+1}}{3^{2 n+3}}
$$

Let's compute.

$$
\frac{a_{n+1}}{a_{n}}=\frac{a_{n+1}}{1} \frac{1}{a_{n}}=\frac{5(-2)^{n+1}}{3^{2 n+3}} \frac{3^{2 n+1}}{5(-2)^{n}} \stackrel{\oplus}{\uparrow} \stackrel{5}{=} \frac{5}{5} \frac{(-2)^{n+1}}{(-2)^{n}} \frac{3^{2 n+1}}{3^{2 n+3}} \stackrel{\oplus(A)}{=} \frac{(-2)^{1}}{3^{2}}=\frac{-2}{9} .
$$

Thus $\sum 5 \frac{(-2)^{n}}{3^{2 n+1}}$ is a geometric series with ratio $r=\frac{-2}{9}$.
Ex3. Consider the series $\sum_{n=17}^{\infty} \frac{5(-2)^{n}}{3^{2 n+1}}$ from Example 2 along with its partial sums

$$
s_{n}:=\sum_{k=17}^{n} \frac{5(-2)^{k}}{3^{2 k+1}} \quad \text { for } n \geq 17
$$

3.1. Express s_{n} without using a ...-sign or \sum-sign.
3.3. Determine if the series converges or diverges.
3.2. Find $\lim _{n \rightarrow \infty} s_{n}$, if the limit exists.
3.4. If the series converges, find its sum.

Soln. From our calculations in Example 2, we already know that the series is a geometric series with ratio $r=\frac{-2}{9}$; hence, since $|r|<1$, we know the series converges (thus we have anwered question 3.3) and the series must be of the (simplified) form $\sum a_{n}=\sum a r^{n}=\sum a\left(\frac{-2}{9}\right)^{n}$ for some constant a. To find this simplified form, we manipulate a_{n} to make it look like $a r^{n}$:

$$
a_{n}=\frac{5(-2)^{n}}{3^{2 n+1}}=\frac{5(-2)^{n}}{3\left(3^{2}\right)^{n}}=\frac{5}{3}\left(\frac{-2}{9}\right)^{n}
$$

thus,

$$
\sum_{n=17}^{\infty} \frac{5(-2)^{n}}{3^{2 n+1}}=\sum_{n=17}^{\infty} \frac{5}{3}\left(\frac{-2}{9}\right)^{n} \quad \text { and } \quad s_{n}=\sum_{k=17}^{n} \frac{5}{3}\left(\frac{-2}{9}\right)^{k} \stackrel{\oplus}{=} \frac{5}{3} \sum_{k=17}^{n}\left(\frac{-2}{9}\right)^{k}
$$

As in Example 1, let's find an expression for $s_{n}-r s_{n}$, which results in a cancellation heaven.

$$
\begin{aligned}
s_{n} & =\frac{5}{3}\left[\left(\frac{-2}{9}\right)^{17}+\left(\frac{-2}{9}\right)^{\not \boxed{ }}+\ldots+\left(\frac{-2}{9}\right)^{n-x}+\left(\frac{-2}{9}\right)^{\not ㇒}\right] \\
\left(\frac{-2}{9}\right) s_{n} & =\frac{5}{3}\left[\left(\frac{-2}{9}\right)^{\not \boxed{ }} \times\left(\frac{-2}{9}\right)^{\not \boxed{ }}+\ldots+\left(\frac{-2}{9}\right)^{\swarrow}+\left(\frac{-2}{9}\right)^{n+1}\right]
\end{aligned}
$$

substract

$$
\left(1-\left(\frac{-2}{9}\right)\right) s_{n} \stackrel{(A)}{=} s_{n}-\left(\frac{-2}{9}\right) s_{n} \quad=\frac{5}{3}\left[\left(\frac{-2}{9}\right)^{17} \quad-\left(\frac{-2}{9}\right)^{n+1}\right]
$$

and so

$$
\begin{align*}
& s_{n} \stackrel{\oplus(A)}{=} \frac{\frac{5}{3}\left[\left(\frac{-2}{9}\right)^{17}-\left(\frac{-2}{9}\right)^{n+1}\right]}{1-\left(\frac{-2}{9}\right)} \stackrel{\oplus}{=} \frac{\frac{5}{3}\left[\left(\frac{-2}{9}\right)^{17}-\left(\frac{-2}{9}\right)^{n+1}\right]}{\frac{11}{9}} \\
& \stackrel{\oplus(4)}{=} \frac{9}{11} \cdot \frac{5}{3}\left[\left(\frac{-2}{9}\right)^{17}-\left(\frac{-2}{9}\right)^{n+1}\right] \quad \xrightarrow{\frac{n \rightarrow \infty}{\longrightarrow}} \frac{9}{11} \frac{5}{3}\left[\left(\frac{-2}{9}\right)^{17}-0\right] \stackrel{15}{=}\left(\frac{-2}{9}\right)^{17} . \tag{3ans}\\
& \text { for } r=\frac{-2}{9}, \lim _{n \rightarrow \infty} r^{n}=0 \text { since }|r|<1
\end{align*}
$$

Note that (3ans) contains the answers since $\sum_{n=17}^{\infty} a_{n}=\lim _{n \rightarrow \infty}\left(a_{17}+a_{18}+\ldots+a_{n}\right)=\lim _{n \rightarrow \infty} s_{n}$.
3.1. $s_{n}=\frac{9}{11} \cdot \frac{5}{3}\left[\left(\frac{-2}{9}\right)^{17}-\left(\frac{-2}{9}\right)^{n+1}\right]$.
3.2. $\lim _{n \rightarrow \infty} s_{n}=\frac{15}{11}\left(\frac{-2}{9}\right)^{17}$.
3.3. Since the sequence of partial sums $\left\{s_{n}\right\}$ converges, the series $\sum a_{n}$ converges.
3.4. $\sum_{n=17}^{\infty} \frac{5(-2)^{n}}{3^{2 n+1}}=\frac{15}{11}\left(\frac{-2}{9}\right)^{17}$

Telescoping Series

Problem. We are given a specific series $\sum_{n=1}^{\infty} a_{n}$ and we want to find its sum.
Goal. Find a formula (without using a ...-sign or \sum-sign) for s_{n} so we can easily compute $\lim _{n \rightarrow \infty} s_{n}$ where

$$
s_{n}=a_{1}+a_{2}+\ldots+a_{n}=\sum_{k=1}^{n} a_{k} \quad \text { and so } \quad \sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}
$$

provided the limit exists.

- For a geometric series $\sum a r^{n}$ we can find a formula (without a ...-sign or \sum-sign) for $s_{n}-r s_{n}$, which has naturally present cancellations, and then we just used simple algebra to solve for s_{n}.
- Now we consider a telescoping series where such a formula (without a \ldots-sign or \sum-sign) for s_{n} can be found directly from taking advantage of naturally present cancellations within s_{n} itself.

Ex4. Determine the behavior of the series

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)
$$

Check one box, and if you check the first box then fill in its blank. Justify your answer.
\square The series converges to a finite number, in which case $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=$ \qquad
The series diverges to ∞, and so we write $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\infty$
The series diverges to $-\infty$, and so we write $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=-\infty$
The series diverges but does not diverge to $\pm \infty$, i.e. $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)$ DNE.
Soln. Let $a_{n}=\left(\frac{1}{n}-\frac{1}{n+1}\right)$ and $s_{n}=\sum_{k=1}^{n} a_{k}$. Thus we want to consider $\lim _{n \rightarrow \infty} s_{n}$ where

$$
\begin{aligned}
s_{n} & =\sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k+1}\right) \\
& =\underbrace{\left(\frac{1}{1}-\frac{1}{2}\right)}_{k=1}+\underbrace{\left(\frac{1}{2}-\frac{1}{3}\right)}_{k=2}+\underbrace{\left(\frac{1}{3}-\frac{1}{4}\right)}_{k=3}+\cdots+\underbrace{\left(\frac{1}{n-1}-\frac{1}{n}\right)}_{k=n-1 \text { term }}+\underbrace{\left(\frac{1}{n}-\frac{1}{n+1}\right)}_{k=n \text { term }} .
\end{aligned}
$$

Do you see some natural cancellation in the ...-formulation of s_{n} ? If not, perhaps rewriting s_{n} will help.

$$
\begin{gathered}
s_{n}=\left(1+\frac{-1}{2}\right)+\left(\frac{1}{2}+\frac{-1}{3}\right)+\left(\frac{1}{3}+\frac{-1}{4}\right)+\ldots+\left(\frac{1}{n-1}+\frac{-1}{n}\right)+\left(\frac{1}{n}+\frac{-1}{n+1}\right) . \\
\text { cancel } \quad \text { cancel } \quad \text { cancel } \cdots \text { cancel } \quad \text { cancel }
\end{gathered}
$$

Or perhaps you can see the natural cancellation viewing as s_{n} as

$$
\begin{aligned}
& s_{n}=1+\frac{-\chi}{2} \quad \leftrightarrow \rightsquigarrow k=1 \text { term } \\
& +\frac{+\chi}{2}+\frac{-\chi}{3} \quad \text { ぃ } \rightarrow k=2 \text { term } \\
& +\frac{+\nmid}{3}+\frac{-\nmid}{4} \quad \text { ぃぃ } k=3 \text { term }
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{+\chi}{n}+\frac{-1}{n+1} \quad \leadsto \rightsquigarrow k=n \text { term } .
\end{aligned}
$$

Either viewpoint leads to

$$
s_{n}=1+\frac{-1}{n+1} \quad \xrightarrow[n \rightarrow \infty]{ } \quad 1+0=1
$$

Thus the answer is：
x The series $\sum\left(\frac{1}{n}-\frac{1}{n+1}\right)$ converges to a finite number and $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\underline{1}$ ．
Ex5．Determine the behavior of the series

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}
$$

Check one box，and if you check the first box then fill in its blank．Justify your answer．
\square The series converges to a finite number，in which case $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=$ \qquad
The series diverges to ∞ ，and so we write $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\infty$
The series diverges to $-\infty$ ，and so we write $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=-\infty$
The series diverges but does not diverge to $\pm \infty$ ，i．e．$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ DNE．
Soln．Solving the Partial Fractions Decomposition

$$
\frac{1}{n(n+1)}=\frac{A}{n}+\frac{B}{n+1}
$$

leads to

$$
\frac{1}{n(n+1)}=\frac{1}{n}+\frac{-1}{n+1} .
$$

Thus

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\sum_{n+1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)
$$

i．e．，this Example 5 is just the previous Example 4 in disguise．So the answer is：
x The series $\sum \frac{1}{n(n+1)}$ converges to a finite number and $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\underline{1}$ ．
Note that our Example 5 is the textbook＇s Example 5 on pages $587-588$ ．

Ex6. After class, get out a pencil and try this example.
Determine the behavior of the series

$$
\sum_{n=1}^{\infty} \frac{2}{n(n+2)}
$$

Check one box, and if you check the first box then fill in its blank. Justify your answer.
\square The series converges to a finite number, in which case $\sum_{n=1}^{\infty} \frac{2}{n(n+2)}=$
\qquad
The series diverges to ∞, and so we write $\sum_{n=1}^{\infty} \frac{2}{n(n+2)}=\infty$
The series diverges to $-\infty$, and so we write $\sum_{n=1}^{\infty} \frac{2}{n(n+2)}=-\infty$
The series diverges but does not diverge to $\pm \infty$, i.e. $\sum_{n=1}^{\infty} \frac{2}{n(n+2)}$ DNE.
Soln. Let $a_{n}=\frac{2}{n(n+2)}$ and $s_{n}=\sum_{k=1}^{n} a_{k}$. Thus we want to consider $\lim _{n \rightarrow \infty} s_{n}$. Solving the Partial Fractions Decomposition

$$
\frac{2}{n(n+2)}=\frac{A}{n}+\frac{B}{n+2}
$$

leads to

$$
\frac{2}{n(n+2)}=\frac{1}{n}+\frac{-1}{n+2} .
$$

Thus s_{n} takes the form

$$
\begin{aligned}
s_{n} & =\sum_{k=1}^{n}\left(\frac{1}{k}+\frac{-1}{k+2}\right) \\
& =\underbrace{\left(\frac{1}{1}+\frac{-1}{3}\right)}_{k=1 \text { term }}+\underbrace{\left(\frac{1}{2}+\frac{-1}{4}\right)}_{k=2 \text { term }}+\underbrace{\left(\frac{1}{3}+\frac{-1}{5}\right)}_{k=3 \text { term }}+\underbrace{\left(\frac{1}{4}+\frac{-1}{6}\right)}_{k=4 \text { term }}+\ldots+\underbrace{\left(\frac{1}{n-1}+\frac{-1}{n+1}\right)}_{k=n-1 \text { term }}+\underbrace{\left(\frac{1}{n}+\frac{-1}{n+2}\right)}_{k=n \text { term }} .
\end{aligned}
$$

The natural cancellation going on is kinda hard to see so let's rewrite s_{n}. Since the denominators n and $n+2$ differ by 2 , we will write 2 terms per line (compare with Example 4, where the denominators n and $n+1$ differed by 1 and so we wrote 1 term per line).

$$
\begin{aligned}
& s_{n}=\frac{+1}{1}+\frac{-1}{3}+\frac{+1}{2}+\frac{-1}{4} \quad \quad \leftrightarrow k=1 \text { and } k=2 \text { terms } \\
& +\frac{+1}{3}+\frac{-1}{5}+\frac{+1}{4} \quad+\frac{-1}{6} \quad \leftrightarrow k=3 \text { and } k=4 \text { terms } \\
& +\frac{+1}{5}+\frac{-1}{7}+\frac{+1}{6}+\frac{-1}{8} \quad \leftrightarrow k=5 \text { and } k=6 \text { terms } \\
& +\frac{+1}{7}+\frac{-1}{9}+\frac{+1}{8} \quad+\frac{-1}{10} \quad \leftrightarrow \rightsquigarrow \rightarrow=7 \text { and } k=8 \text { terms } \\
& +\frac{+1}{n-3}+\frac{-1}{n-1}+\frac{+1}{n-2}+\frac{-1}{n} \quad \leadsto m=n-3 \text { and } k=n-2 \text { terms } \\
& +\frac{+1}{n-1}+\frac{-1}{n+1}+\frac{+1}{n} \quad+\frac{-1}{n+2} \quad \leftrightarrow m \rightarrow k=n-1 \text { and } k=n \text { terms } .
\end{aligned}
$$

Now the natural cancellation is clearer; indeed,

$$
\begin{aligned}
& s_{n}=\frac{+1}{1}+\frac{-\not \chi}{3}+\frac{+1}{2}+\frac{-\not \chi}{4} \quad \leftrightarrow \rightsquigarrow k=1 \text { and } k=2 \text { terms } \\
& \stackrel{\text { ¹) }}{\swarrow} \text { (2) } \\
& +\frac{+\nless}{3}+\frac{-\chi}{5}+\frac{+\not \partial}{4}+\frac{-\not \chi}{6} \quad \leadsto \rightsquigarrow k=3 \text { and } k=4 \text { terms } \\
& +\frac{+\not \partial}{5}+\frac{-\chi}{7}+\frac{+\not \partial}{6}+\frac{-\not \chi}{8} \quad \leftrightarrow \rightsquigarrow \rightarrow k=5 \text { and } k=6 \text { terms } \\
& \text { (5) (6) } \\
& +\frac{+\chi}{7}+\frac{-\chi}{9}+\frac{+\chi}{8}+\frac{-\chi}{10} \quad \leadsto \rightsquigarrow k=7 \text { and } k=8 \text { terms } \\
& \vdots \stackrel{(7)}{\swarrow} \\
& +\frac{+y}{\not x-3}+\frac{-y}{\not x-1}+\frac{+y}{\not x-2}+\frac{-\not x}{n} \quad \quad \text { ぃn } k=n-3 \text { and } k=n-2 \text { terms } \\
& +\frac{+y}{\not 2-1}+\frac{-1}{n+1}+\frac{+\not \swarrow}{n}+\frac{-1}{n+2} \quad \quad \leftrightarrow m k=n-1 \text { and } k=n \text { terms } .
\end{aligned}
$$

Thus we have

$$
s_{n}=1+\frac{1}{2}+\frac{-1}{n+1}+\frac{-1}{n+2} \quad \longrightarrow \quad 1+\frac{1}{2}+0+0=\frac{3}{2} .
$$

Thus the answer is:
x The series $\sum \frac{2}{n(n+2)}$ converges to a finite number and $\sum_{n=1}^{\infty} \frac{2}{n(n+2)}=\underline{\frac{3}{2}}$.

$$
n^{\text {th }} \text {-term test for divergence: If } \lim _{n \rightarrow \infty} a_{n} \neq 0 \text {, then } \sum a_{n} \text { diverges. }
$$

Observation: Let $\sum a_{n}$ converges, say $\sum_{n=1}^{\infty} a_{n}=17$. What can you say about a_{n} ?
Well $a_{n}=\sum_{k=1}^{n} a_{k}-\sum_{k=1}^{n-1} a_{k}=s_{n}-s_{n-1} \xrightarrow{n \rightarrow \infty} 17-17=0$.
So have: If $\sum a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$. get the Test: If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ (which includes the possiblity that $\lim _{n \rightarrow \infty} a_{n} \mathrm{DNE}$), then $\sum a_{n}$ diverges. Warning: If $\lim _{n \rightarrow \infty} a_{n}=0$, then it is possible that $\sum a_{n}$ converges and it is possible that $\sum a_{n}$ diverges. for example: We know $\frac{1}{2^{n}} \xrightarrow{n \rightarrow \infty} 0$ and $\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1$ We know $\frac{1}{n} \xrightarrow{n \rightarrow \infty} 0$ and we will show $\sum_{n=1}^{\infty} \frac{1}{n}=\infty$. Remark: The $n^{\text {th }}$-term test (for divergence) can show divergence but can NOT show convergence.

Ex7. Determine the behavior of the series

$$
\sum_{n=1}^{\infty} \frac{3 n^{2}}{5 n^{2}+1}
$$

Soln. Note

$$
\lim _{n \rightarrow \infty} \frac{3 n^{2}}{5 n^{2}+1}=\lim _{n \rightarrow \infty} \frac{\frac{3 n^{2}}{n^{2}}}{\frac{5 n^{2}+1}{n^{2}}} \lim _{n \rightarrow \infty} \frac{3}{5+\frac{1}{n^{2}}}=\frac{3}{5} \neq 0
$$

So by the $n^{\text {th }}$-term test (for divergence), the series $\sum_{n=1}^{\infty} \frac{3 n^{2}}{5 n^{2}+1}$ diverges.

Algebraic Properties

Since the convergence of a series is really just the convergence of its sequence of partial sums, the algebraic properties that hold for sequences also hold for series.

Algebraic Properies of Series

Let $\sum a_{n}$ and $\sum b_{n} \underline{\text { both converge. Then }}$

$$
\begin{aligned}
\sum\left(a_{n}+b_{n}\right) & =\left(\sum a_{n}\right)+\left(\sum b_{n}\right) \\
\sum\left(a_{n}-b_{n}\right) & =\left(\sum a_{n}\right)-\left(\sum b_{n}\right) \\
\sum\left(k a_{n}\right) & =k\left(\sum a_{n}\right)
\end{aligned}
$$

where k is any constant.
Note that these Algebraic Properies of Series imply the following.
Corollary to the Algebraic Properies of Series
Let $\sum c_{n}$ converges and $\sum d_{n}$ diverges.

$$
\begin{array}{cc}
\sum\left(c_{n}+d_{n}\right) & \text { diverges } \\
\sum\left(c_{n}-d_{n}\right) & \text { diverges } \\
\sum\left(k d_{n}\right)
\end{array}
$$

where k is any constant.
Let's see why the first one holds. Let $\sum c_{n}$ converges and $\sum d_{n}$ diverges. We know that $\sum\left(c_{n}+d_{n}\right)$ either converges or diverges. Assume that $\sum\left(c_{n}+d_{n}\right)$ converges. Then by the Algebraic Properies of Series we would have that

$$
\sum\left(\left(c_{n}+d_{n}\right)-c_{n}\right) \stackrel{\text { note }}{=} \sum d_{n} \quad \text { converges. }
$$

But we know that $\sum d_{n}$ diverges. A contradiction! So our assumption that $\sum\left(c_{n}+d_{n}\right)$ converges cannot hold. So $\sum\left(c_{n}+d_{n}\right)$ must diverge.

Positive Termed Series

Let $\sum a_{n}$ is a positive termed series (which just means that each term $a_{n} \geq 0$). Then $s_{n} \leq s_{n+1}$ and so the the sequence $\left\{s_{n}\right\}_{n}$ is \nearrow, i.e., is nondecreasing and so

- either $\left\{s_{n}\right\}_{n}$ converges (to some finite number), in which case $\sum a_{n}$ converges and $\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}$
- OR $\quad\left\{s_{n}\right\}_{n}$ diverges to ∞, in which case $\sum a_{n}$ diverges to ∞ and $\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}=\infty$

