1. Start with a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$. (In above Ex., $a_{n}=\frac{1}{2^{n}}$). Think of $\left\{a_{n}\right\}_{n}$ as an ordered list of numbers, i.e.,

$$
\left\{a_{n}\right\}_{n=1}^{\infty}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}
$$

2. Form the corresponding (formal) series $\sum_{n=1}^{\infty} a_{n}$.

Think of the series $\sum a_{n}$ as

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\ldots \stackrel{\text { note }}{=} \sum_{k=1}^{\infty} a_{k}
$$

3. Look at the corresponding $\underline{n}^{\text {th }}$ partial sum s_{n} where

$$
s_{n}:=a_{1}+a_{2}+\cdots+a_{n} \stackrel{\text { def }}{=} \sum_{k=1}^{n} a_{k} \stackrel{\text { NOTSO }}{=} \sum_{n=1}^{n} a_{n}
$$

So we get the sequence of partial sums

$$
\left\{s_{n}\right\}_{n=1}^{\infty}=\{\underbrace{a_{1}}_{s_{1}}, \underbrace{a_{1}+a_{2}}_{s_{2}}, \underbrace{a_{1}+a_{2}+a_{3}}_{s_{3}}, \underbrace{a_{1}+a_{2}+a_{3}+a_{4}}_{s_{4}}, \underbrace{a_{1}+a_{2}+a_{3}+a_{4}+a_{5}}_{s_{5}}, \ldots\}
$$

4. Beware: for a series $\sum a_{n}$

- the $n^{\text {th }}$ partial sum of $\sum a_{n}$ is $s_{n} \stackrel{\text { def }}{=} a_{1}+a_{2}+\ldots+a_{n}$
- the $n^{\text {th }}$ term of $\sum a_{n}$ is a_{n}.

Since $s_{n}=\left(a_{1}+\ldots+a_{n-1}\right)+a_{n}=s_{n-1}+a_{n}$, we have that relation that $a_{n}=s_{n}-s_{n-1}$.
5. We say that the infinite
5.1) series $\sum a_{n}$ converges
provided the sequence of partial sums $\left\{s_{n}\right\}_{n}$ converges
5.2) series $\sum a_{n}$ diverges to ${ }^{+} \infty$ provided the sequence of partial sums $\left\{s_{n}\right\}_{n}$ diverges to $+\infty$
5.3) series $\sum a_{n}$ diverges to ${ }^{-\infty}$ provided the sequence of partial sums $\left\{s_{n}\right\}_{n}$ diverges to $-\infty$.
5.4) series $\sum a_{n}$ diverges provided the sequence of partial sums $\left\{s_{n}\right\}_{n}$ diverges

We write (in the first 3 cases, i.e., in 5.1, 5.2 , and 5.3) as:

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(a_{1}+a_{2}+\ldots+a_{n}\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}
$$

6. It doesn't matter where you start Theorem Note: $\sum_{k=1}^{N} a_{k}=\left(a_{1}+a_{2}+\ldots+a_{16}\right)+\sum_{k=17}^{N} a_{k}$.

So $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=17}^{\infty} a_{n}$ do the same thing amongst the choices from 5.1-5.4.

- $\sum_{n=1}^{\infty} a_{n}$ converges (to some finite number) $\Leftrightarrow \sum_{n=17}^{\infty} a_{n}$ converges (to some finite number).
(warning: each series converges but the finite number they converge to may be different).
- $\sum_{n=1}^{\infty} a_{n}$ diverges to $\infty \quad \Leftrightarrow \sum_{n=17}^{\infty} a_{n}$ diverges to ∞.
$\circ \sum_{n=1}^{\infty} a_{n}$ diverges to $-\infty \Leftrightarrow \sum_{n=17}^{\infty} a_{n}$ diverges to $-\infty$.
$\circ \sum_{n=1}^{\infty} a_{n}$ diverges $\quad \Leftrightarrow \sum_{n=17}^{\infty} a_{n}$ diverges.

7. $n^{\text {th }}$-term test for divergence.

Since: If $\sum a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
get the Test: If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ (which includes the possiblity that $\lim _{n \rightarrow \infty} a_{n}$ DNE), then $\sum a_{n}$ diverges.
Warning: If $\lim _{n \rightarrow \infty} a_{n}=0$, then it is possible that $\sum a_{n}$ converges and it is possible that $\sum a_{n}$ diverges.
Remark: The $n^{\text {th }}$-term test (for divergence) can show divergence but can NOT show convergence.
8. Let $\sum a_{n}$ is a positive termed series (which just means that each term $a_{n} \geq 0$). Then $s_{n} \leq s_{n+1}$ and so the the sequence $\left\{s_{n}\right\}_{n}$ is \nearrow, i.e., is nondecreasing and so

- EITHER $\left\{s_{n}\right\}_{n}$ converges (to some finite number), in which case $\sum a_{n}$ converges and $\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}$
- OR $\quad\left\{s_{n}\right\}_{n}$ diverges to ∞, in which case $\sum a_{n}$ diverges to ∞ and $\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}=\infty$

