Think of the series $\sum a_n$ as

1. Start with a sequence $\{a_n\}_{n=1}^{\infty}$. (In above Ex., $a_n = \frac{1}{2^n}$). Think of $\{a_n\}_n$ as an ordered list of numbers, i.e.,

$$\{a_n\}_{n=1}^{\infty} = \{a_1, a_2, a_3, \ldots\}$$

2. Form the corresponding (formal) series $\sum_{n=1}^{\infty} a_n$.

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots \stackrel{\text{note}}{=} \sum_{k=1}^{\infty} a_k .$$

3. Look at the corresponding $\underline{n^{\text{th}} \text{ partial sum}} s_n$ where

$$s_n := a_1 + a_2 + \dots + a_n \stackrel{\text{def}}{=} \sum_{k=1}^n a_k \stackrel{\text{NOT-SO}}{=} \sum_{n=1}^n a_n .$$

So we get the sequence of partial sums

$$\{s_n\}_{n=1}^{\infty} = \{ \underbrace{a_1}_{s_1}, \underbrace{a_1+a_2}_{s_2}, \underbrace{a_1+a_2+a_3}_{s_3}, \underbrace{a_1+a_2+a_3+a_4}_{s_4}, \underbrace{a_1+a_2+a_3+a_4+a_5}_{s_5}, \ldots \}.$$

4. Beware: for a series $\sum a_n$

- the <u>n</u>th partial sum of $\sum a_n$ is $s_n \stackrel{\text{def}}{=} a_1 + a_2 + \ldots + a_n$
- the $\underbrace{n^{\text{th}}}_{m}$ term of $\sum a_n$ is a_n .

Since $s_n = (a_1 + \ldots + a_{n-1}) + a_n = s_{n-1} + a_n$, we have that relation that $a_n = s_n - s_{n-1}$. 5. We say that the infinite

5.1) <u>series</u> $\sum a_n$ <u>converges</u> provided the sequence of partial sums $\{s_n\}_n$ <u>converges</u> 5.2) <u>series</u> $\sum a_n$ <u>diverges to $+\infty$ </u> provided the sequence of partial sums $\{s_n\}_n$ <u>diverges to $+\infty$ </u> 5.3) <u>series</u> $\sum a_n$ <u>diverges to $-\infty$ </u> provided the sequence of partial sums $\{s_n\}_n$ <u>diverges to $-\infty$ </u>. 5.4) <u>series</u> $\sum a_n$ <u>diverges</u> provided the sequence of partial sums $\{s_n\}_n$ <u>diverges to $-\infty$ </u>.

We write (in the first 3 cases, i.e., in 5.1, 5.2, and 5.3) as:

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n = \lim_{n \to \infty} (a_1 + a_2 + \ldots + a_n) = \lim_{n \to \infty} \sum_{k=1}^n a_k + \ldots + a_n$$

6. <u>It doesn't matter where you start Theorem</u> Note: $\sum_{k=1}^{N} a_k = (a_1 + a_2 + \ldots + a_{16}) + \sum_{k=17}^{N} a_k$. So $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=17}^{\infty} a_n$ do the same thing amongst the choices from 5.1–5.4.

 $\circ \sum_{n=1}^{\infty} a_n$ converges (to some finite number) $\Leftrightarrow \sum_{n=17}^{\infty} a_n$ converges (to some finite number). (warning: each series converges but the finite number they converge to may be different).

$$\circ \sum_{n=1}^{\infty} a_n \text{ diverges to } \infty \qquad \Leftrightarrow \qquad \sum_{n=17}^{\infty} a_n \text{ diverges to } \infty.$$

$$\circ \sum_{n=1}^{\infty} a_n \text{ diverges to } -\infty \qquad \Leftrightarrow \qquad \sum_{n=17}^{\infty} a_n \text{ diverges to } -\infty.$$

$$\circ \sum_{n=1}^{\infty} a_n \text{ diverges } \qquad \Leftrightarrow \qquad \sum_{n=17}^{\infty} a_n \text{ diverges.}$$

7. $\underline{n^{\text{th}}\text{-term test for divergence}}$.

Since: If $\sum a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

get the Test: If $\lim_{n\to\infty} a_n \neq 0$ (which includes the possiblity that $\lim_{n\to\infty} a_n$ DNE), then $\sum a_n$ diverges. Warning: If $\lim_{n\to\infty} a_n = 0$, then it is possible that $\sum a_n$ converges and it is possible that $\sum a_n$ diverges. Remark: The *n*th-term test (for divergence) can show divergence but can NOT show convergence.

- 8. Let $\sum a_n$ is a positive termed series (which just means that each term $a_n \ge 0$). Then $s_n \le s_{n+1}$ and so the the sequence $\{s_n\}_n$ is \nearrow , i.e., is nondecreasing and so
 - EITHER $\{s_n\}_n$ converges (to some finite number), in which case $\sum a_n$ converges and $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n$
 - OR $\{s_n\}_n$ diverges to ∞ , in which case $\sum a_n$ diverges to ∞ and $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n = \infty$