
Power Series vs. Taylor Series

Theorem 1. Power series vs. Taylor series.

If f has a power series representation (expansion) about x0, that is, if for some R > 0

f (x) =
∞∑
n=0

cn (x− x0)n valid when |x− x0| < R

then the cn’s must satisfy

cn =
f (n) (x0)

n!
.

In short, if a function y = f (x) has a power series representation about x0,
then that power series representation

:::::
must be the Taylor series y = P∞ (x) of f about x0.

Warning. It is possible for a function not to be equal to it’s Taylor series. Consider the function

f (x) =

{
e−1/x

2
, x 6= 0

x , x = 0 whose graph is

Note f (0) = 0. With considerable more work we can show that all of f ’s derivatives at 0 are 0,
i.e. f (n) (0) = 0. Thus the Taylor series P∞ about the center x0 = 0 of f is the constant function
P∞ (x) = 0 for each x ∈ R. So f (x) = P∞ (x) only when x = x0.

Why Theorem 1 is true. Suppose f has a power series representation (expansion) about x0, i.e,
for some R > 0

f (x) =
∞∑
n=0

cn (x− x0)n valid when |x− x0| < R.

Since we can differentiate a power series term-by-term within it’s interval of convergence, when |x− x0| < R

f (x) = c0 + c1 (x− x0) + c2 (x− x0)
2 + c3 (x− x0)

3 + c4 (x− x0)
4 + c5 (x− x0)

5 + . . .

f (1) (x) = c1 + 2c2 (x− x0)
1 + 3c3 (x− x0)

2 + 4c4 (x− x0)
3 + 5c5 (x− x0)

4 + . . .

f (2) (x) = 2c2 + 2 · 3c3 (x− x0)
1 + 3 · 4c4 (x− x0)

2 + 4 · 5c5 (x− x0)
3 + . . .

f (3) (x) = 2 · 3c3 + 2 · 3 · 4c4 (x− x0)
1 + 3 · 4 · 5c5 (x− x0)

2 + . . .

f (4) (x) = 2 · 3 · 4c4 + 2 · 3 · 4 · 5c5 (x− x0)
1 + . . .

... .

Thus

f (0) (x0) = c0 + 0 + 0 + 0 + 0 + 0 + . . . = (0!) c0

f (1) (x0) = c1 + 0 + 0 + 0 + 0 + . . . = (1!) c1

f (2) (x0) = 2c2 + 0 + 0 + 0 + . . . = (2!) c2

f (3) (x0) = 2 · 3c3 + 0 + 0 + . . . = (3!) c3

f (4) (x0) = 2 · 3 · 4c4 + 0 + . . . = (4!) c4

... .

Notice we get that f (n) (x0) = (n!) cn and so cn = f (n)(x0)
n!

.
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Power Series vs. Taylor Series

Examples 1-3 from Class Lecture

Example 1. We were given the center x0 = 0 and the function

f (x) =
1

1− x
.

We have computed the Taylor series P∞ as

P∞ (x) =
∞∑
n=0

xn . (1)

The power series series in (1) converges when |x| < 1, which we can show using the ratio/root test.
Recall that for the Geometric Series

∞∑
n=0

rn =
1

1− r
valid when |r| < 1,

which we showed some time ago by considering the sn − rsn. Replacing r by x we get

1

1− x
=

∞∑
n=0

xn valid when |x| < 1,

which gives that the function f has a power series representation.
So by Theorem 1, f ’s power series representation must be f ’s Taylor series! So the function

f (x) = 1
1−x is equal to it’s Taylor series y = P∞ (x) when |x| < 1.

Example 2. We were given the center x0 = π and the function

f (x) = sin x .

We have computed the Taylor series P∞ as

P∞ (x) =
∞∑
n=0

(−1)(n+1)

(2n+ 1)!
(x− π)2n+1 . (2)

The power series in (2) converges for each x ∈ R, which we can show using the ratio test.

Example 3. We were given the center x0 = 0 and the function

f (x) = ln (1 + x) .

We have computed the Taylor series P∞ as

P∞ (x) =
∞∑
n=1

(−1)(n+1)

n
xn (3)

The power series in (3) converges when x ∈ (−1,+1]. which we show using: ratio test, AST, and p-series.
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