Theorem 1. Power series vs. Taylor series.

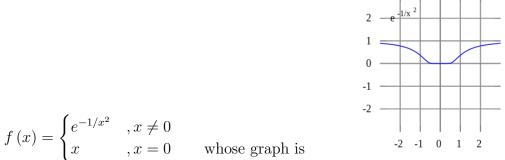
If f has a power series representation (expansion) about x_0 , that is, if for some R > 0

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$$
 valid when $|x - x_0| < R$

then the c_n 's must satisfy

$$c_n = \frac{f^{(n)}(x_0)}{n!} \, .$$

In short, if a function y = f(x) has a power series representation about x_0 , then that power series representation must be the Taylor series $y = P_{\infty}(x)$ of f about x_0 . Warning. It is possible for a function not to be equal to it's Taylor series. Consider the function



Note f(0) = 0. With considerable more work we can show that all of f's derivatives at 0 are 0, i.e. $f^{(n)}(0) = 0$. Thus the Taylor series P_{∞} about the center $x_0 = 0$ of f is the constant function $P_{\infty}(x) = 0$ for each $x \in \mathbb{R}$. So $f(x) = P_{\infty}(x)$ only when $x = x_0$.

Why Theorem 1 is true. Suppose f has a power series representation (expansion) about x_0 , i.e, for some R > 0

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$$
 valid when $|x - x_0| < R$.

Since we can differentiate a power series term-by-term within it's interval of convergence, when $|x - x_0| < R$

 $= c_0 + c_1 (x - x_0) + c_2 (x - x_0)^2 + c_3 (x - x_0)^3 + c_4 (x - x_0)^4 + c_5 (x - x_0)^5$ f(x) $+2c_{2}(x-x_{0})^{1}+3c_{3}(x-x_{0})^{2}+4c_{4}(x-x_{0})^{3}+5c_{5}(x-x_{0})^{4}+\dots$ $2c_{2}+2\cdot 3c_{3}(x-x_{0})^{1}+3\cdot 4c_{4}(x-x_{0})^{2}+4\cdot 5c_{5}(x-x_{0})^{3}+\dots$ $f^{(1)}(x) =$ C_1 $f^{(2)}(x) =$ $2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4 (x - x_0)^1 + 3 \cdot 4 \cdot 5c_5 (x - x_0)^2 + \dots$ $f^{(3)}(x) =$ $f^{(4)}(x) =$ $2 \cdot 3 \cdot 4c_4 + 2 \cdot 3 \cdot 4 \cdot 5c_5 (x - x_0)^1 + \dots$ Thus $f^{(0)}(x_0) = c_0 + 0$ +0+0 $+\ldots = (0!) c_0$ +0+0 $f^{(1)}(x_0) = c_1$ + 0+0 $+ \ldots = (1!) c_1$ +0+0 $f^{(2)}(x_0) =$ $+ \ldots = (2!) c_2$ + 0 $2c_2$ +0+0 $f^{(3)}(x_0) =$ $+ \ldots = (3!) c_3$ $2 \cdot 3c_{3}$ +0+0 $f^{(4)}(x_0) =$ $+\ldots = (4!) c_4$ $2 \cdot 3 \cdot 4c_4$ +0

÷ .

Notice we get that $f^{(n)}(x_0) = (n!) c_n$ and so $c_n = \frac{f^{(n)}(x_0)}{n!}$.

Examples 1-3 from Class Lecture

Example 1. We were given the center $x_0 = 0$ and the function

$$f(x) = \frac{1}{1-x} \, .$$

We have computed the Taylor series P_{∞} as

$$P_{\infty}\left(x\right) = \sum_{n=0}^{\infty} x^{n} .$$

$$\tag{1}$$

The power series series in (1) converges when |x| < 1, which we can show using the ratio/root test. Recall that for the Geometric Series

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r} \quad \text{valid when} \quad |r| < 1,$$

which we showed some time ago by considering the $s_n - rs_n$. Replacing r by x we get

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \quad \text{valid when} \quad |x| < 1,$$

which gives that the function f has a power series representation.

So by Theorem 1, f's power series representation must be f's Taylor series! So the function $f(x) = \frac{1}{1-x}$ is equal to it's Taylor series $y = P_{\infty}(x)$ when |x| < 1.

Example 2. We were given the center $x_0 = \pi$ and the function

$$f(x) = \sin x \; .$$

We have computed the Taylor series P_∞ as

$$P_{\infty}(x) = \sum_{n=0}^{\infty} \frac{(-1)^{(n+1)}}{(2n+1)!} \left(x - \pi\right)^{2n+1} .$$
(2)

The power series in (2) converges for each $x \in \mathbb{R}$, which we can show using the ratio test.

Example 3. We were given the center $x_0 = 0$ and the function

$$f(x) = \ln(1+x) .$$

We have computed the Taylor series P_{∞} as

$$P_{\infty}(x) = \sum_{n=1}^{\infty} \frac{(-1)^{(n+1)}}{n} x^{n}$$
(3)

The power series in (3) converges when $x \in (-1, +1]$. which we show using: ratio test, AST, and *p*-series.