Theorem 1. Power series vs. Taylor series.
If $f$ has a power series representation (expansion) about $x_{0}$, that is, if for some $R>0$

$$
f(x)=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n} \quad \text { valid when }\left|x-x_{0}\right|<R
$$

then the $c_{n}$ 's must satisfy

$$
c_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}
$$

In short, if a function $y=f(x)$ has a power series representation about $x_{0}$, then that power series representation must be the Taylor series $y=P_{\infty}(x)$ of $f$ about $x_{0}$.
Warning. It is possible for a function not to be equal to it's Taylor series. Consider the function
$f(x)=\left\{\begin{array}{ll}e^{-1 / x^{2}} & , x \neq 0 \\ x & , x=0\end{array} \quad\right.$ whose graph is


Note $f(0)=0$. With considerable more work we can show that all of $f$ 's derivatives at 0 are 0 , i.e. $f^{(n)}(0)=0$. Thus the Taylor series $P_{\infty}$ about the center $x_{0}=0$ of $f$ is the constant function $P_{\infty}(x)=0$ for each $x \in \mathbb{R}$. So $f(x)=P_{\infty}(x)$ only when $x=x_{0}$.
Why Theorem 1 is true. Suppose $f$ has a power series representation (expansion) about $x_{0}$, i.e, for some $R>0$

$$
f(x)=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n} \quad \text { valid when }\left|x-x_{0}\right|<R .
$$

Since we can differentiate a power series term-by-term within it's interval of convergence, when $\left|x-x_{0}\right|<R$

| $f(x)$ | $=c_{0}+c_{1}\left(x-x_{0}\right)+c_{2}\left(x-x_{0}\right)^{2}$ | $+c_{3}\left(x-x_{0}\right)^{3}$ | $+c_{4}\left(x-x_{0}\right)^{4}$ | $+c_{5}\left(x-x_{0}\right)^{5}$ | $+\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $f^{(1)}(x)=$ | $c_{1}$ | $+2 c_{2}\left(x-x_{0}\right)^{1}+3 c_{3}\left(x-x_{0}\right)^{2}$ | $+4 c_{4}\left(x-x_{0}\right)^{3}$ | $+5 c_{5}\left(x-x_{0}\right)^{4}$ | $+\ldots$ |
| $f^{(2)}(x)=$ | $2 c_{2}$ | $+2 \cdot 3 c_{3}\left(x-x_{0}\right)^{1}+3 \cdot 4 c_{4}\left(x-x_{0}\right)^{2}$ | $+4 \cdot 5 c_{5}\left(x-x_{0}\right)^{3}$ | $+\ldots$ |  |
| $f^{(3)}(x)=$ | $2 \cdot 3 c_{3}$ | $+2 \cdot 3 \cdot 4 c_{4}\left(x-x_{0}\right)^{1}+3 \cdot 4 \cdot 5 c_{5}\left(x-x_{0}\right)^{2}$ | $+\ldots$ |  |  |
| $f^{(4)}(x)=$ |  | $2 \cdot 3 \cdot 4 c_{4}$ | $+2 \cdot 3 \cdot 4 \cdot 5 c_{5}\left(x-x_{0}\right)^{1}+\ldots$ |  |  |

Thus

| $f^{(0)}\left(x_{0}\right)=c_{0}+0$ | +0 | +0 | +0 | +0 | $+\ldots=(0!) c_{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $f^{(1)}\left(x_{0}\right)=$ | $c_{1}$ | +0 | +0 | +0 | +0 |
| $f^{(2)}\left(x_{0}\right)=$ | $2 c_{2}$ | +0 | +0 | +0 | $+\ldots=(1!) c_{1}$ |
| $f^{(3)}\left(x_{0}\right)=$ | $2 \cdot 3 c_{3}$ | +0 | +0 | $+\ldots=(2!) c_{2}$ |  |
| $f^{(4)}\left(x_{0}\right)=$ |  | $2 \cdot 3 \cdot 4 c_{4}$ | +0 | $+\ldots=(3!) c_{3}$ |  |
|  |  |  | $+\ldots=(4!) c_{4}$ |  |  |

Notice we get that $f^{(n)}\left(x_{0}\right)=(n!) c_{n}$ and so $c_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}$.

## Examples 1-3 from Class Lecture

Example 1. We were given the center $x_{0}=0$ and the function

$$
f(x)=\frac{1}{1-x}
$$

We have computed the Taylor series $P_{\infty}$ as

$$
\begin{equation*}
P_{\infty}(x)=\sum_{n=0}^{\infty} x^{n} \tag{1}
\end{equation*}
$$

The power series series in (1) converges when $|x|<1$, which we can show using the ratio/root test.
Recall that for the Geometric Series

$$
\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r} \quad \text { valid when } \quad|r|<1
$$

which we showed some time ago by considering the $s_{n}-r s_{n}$. Replacing $r$ by $x$ we get

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad \text { valid when } \quad|x|<1
$$

which gives that the function $f$ has a power series representation.
So by Theorem 1, $f$ 's power series representation must be $f$ 's Taylor series! So the function $f(x)=\frac{1}{1-x}$ is equal to it's Taylor series $y=P_{\infty}(x)$ when $|x|<1$.
Example 2. We were given the center $x_{0}=\pi$ and the function

$$
f(x)=\sin x
$$

We have computed the Taylor series $P_{\infty}$ as

$$
\begin{equation*}
P_{\infty}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{(n+1)}}{(2 n+1)!}(x-\pi)^{2 n+1} \tag{2}
\end{equation*}
$$

The power series in (2) converges for each $x \in \mathbb{R}$, which we can show using the ratio test.

Example 3. We were given the center $x_{0}=0$ and the function

$$
f(x)=\ln (1+x)
$$

We have computed the Taylor series $P_{\infty}$ as

$$
\begin{equation*}
P_{\infty}(x)=\sum_{n=1}^{\infty} \frac{(-1)^{(n+1)}}{n} x^{n} \tag{3}
\end{equation*}
$$

The power series in (3) converges when $x \in(-1,+1]$. which we show using: ratio test, AST, and $p$-series.

