A main tool used in deciding if a positive-termed series converges is the monotonic sequence theorem. Recall: a sequence \(\{x_n\}_{n \in \mathbb{N}} \) is bounded above means that there is a \(B \in \mathbb{R} \) such that for each \(n \in \mathbb{N} \) \(x_n \leq B \).

MONOTONIC SEQUENCE THEOREM

If \(\{x_n\}_{n \in \mathbb{N}} \) is an increasing sequence (i.e., \(x_n \leq x_{n+1} \) for each \(n \in \mathbb{N} \)), then either

1. \(\{x_n\}_{n \in \mathbb{N}} \) is bounded above, in which case \(\lim_{n \to \infty} x_n \) exists (as a finite real number) or
2. \(\{x_n\}_{n \in \mathbb{N}} \) is not bounded above, in which case \(\lim_{n \to \infty} x_n = \infty \).

KEY IDEA BEHIND POSITIVE-TERMED SERIES

Definition: \(\sum a_n \) is a positive-term series if \(a_n \geq 0 \) for each \(n \).

Explore: Let \(\sum a_n \) be a positive-term series.

1. Consider its sequence of partial sums \(\{S_N\}_{N \in \mathbb{N}} \) where \(S_N = a_1 + a_2 + \ldots + a_N \).
2. Recall that \(\sum_{n=1}^{\infty} a_n = \lim_{N \to \infty} S_N \).
3. \([a_n \geq 0 \text{ for each } n \in \mathbb{N}] \implies [S_N \leq S_{N+1} \text{ for each } N \in \mathbb{N}] \).
4. So \(\{S_N\}_{N \in \mathbb{N}} \) is an increasing sequence.

So either:

1. \(\{S_N\}_{N \in \mathbb{N}} \) is bounded above, in which case, by the monotonic sequence theorem, \(\lim_{N \to \infty} S_N \) exists (as a finite real number) and thus by (2) above, \(\sum a_n \) converges (to a finite real number)
2. \(\{S_N\}_{N \in \mathbb{N}} \) is not bounded above, in which case, by the monotonic sequence theorem, \(\lim_{N \to \infty} S_N = \infty \) and thus by (2) above, \(\sum a_n \) diverges (to \(\infty \)).

POSITIVE-TERMED SERIES CRITERIA

Let \(\sum a_n \) be a positive-term series. Set

\[
S_N := \sum_{n=1}^{N} a_n ,
\]

Then either

1. there exists a bound \(B \) so that for each \(N \) we have \(s_N \leq B \), in which case, the series \(\sum a_n \) converges (to a finite real number)
2. \(\lim_{N \to \infty} s_N = \infty \), in which case, the series \(\sum a_n \) diverges (to \(\infty \)).