
Integral Test & DCT/LCT Positive-Termed Series

0. Fill-in-the boxes. All series
∑

and
∑

n are understood to be
∑∞

n=1 , unless otherwise indicated.

Positive-Termed Series Criteria
(so for

∑
an where an ≥ 0)

Let
∑

an be a positive-termed
:::::
series. We consider its

:::::::::
sequence of partial sums {sn}n where

sn
def
:=

n∑
k=1

ak .

The behavior of
::::::
series

∑
n an is, by definition, the same as the behavoir of

:::::::::
sequence {sn}n.

The key observation is that, because an ≥ 0, the
:::::::::
sequence {sn}n is increasing (i.e., sn ≤ sn+1). So:

either
• the

:::::::::
sequence of partial sums {sn}n is bounded above,

i.e., there is some big number B so that for each n we have that sn ≤ B, in which case,
the

::::::
series

∑
an converges (to a finite real number)

or
• lim

n→∞
sn =∞, in which case,

the
::::::
series

∑
an diverges (to ∞).

Tests for Positive-Termed Series
(so for

∑
an where an ≥ 0)

0a. State the Integral Test for a positive-termed series
∑

an.
Let f : [1,∞)→ R be so that

• an = f
( )

for each n ∈ N

• f is a function

• f is a function

• f is a function.

Then
∑

an converges if and only if converges.

0b. State the Direct Comparison Test (DCT) for a positive-termed series
∑

an.
Let N0 ∈ N.

• If when n ≥ N0 and , then
∑

an converges.

• If when n ≥ N0 and , then
∑

an diverges.

Hint: sing the song to yourself.

0c. State the Limit Comparison Test (LCT) for a positive-termed series
∑

an.

Let bn > 0 and L = limn→∞ .

• If , then .

• If , then .

• If , then .

Goal: cleverly pick positive bn’s so that you know what
∑

bn does (converges or diverges) and the sequence
{

an
bn

}
n
converges.
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Helpful Intuition

Claim 1: If x > 0, then
lnx ≤ x1 ≤ ex .

To see this, consider the function g(x) = ex − x. Then g(0) = 1 and g′(x) = ex > 0 for x > 0.
So for all x > 0, we have g(x) > 0, i.e., ex − x > 0. So ex ≥ x1.
Recall that the graph of y = lnx is the reflection of the graph of y = ex over the line y = x.

Claim 2: Consider a positive power q > 0. There is (some big number) Nq > 0 so that if x ≥ Nq then

lnx ≤ xq ≤ ex .

To see Claim 2, use L’Hôpital’s rule to show that

lim
x→∞

loge x

xq
= 0 and lim

x→∞

xq

ex
= 0 . (∗)

Claim 3: Consider a positive power q > 0 along with a base b > 1.
There is (some big #) Nq,b > 0 so that if x ≥ Nq,b then

logb x ≤ xq ≤ bx

To see Claim 3, recall that loge x = lnx. Recall that for any base b > 0 with b 6= 1

logb x =
loge x

loge b
and Dx logb x =

1

x ln b
and Dxb

x = bx ln b

and limx→∞ bx =∞ if and only if b > 1 . And so (∗) holds if one replaces e with any base b > 1.

Moral: To figure out what is happening to a series involving logb n or bn, keep in mind that as
n→∞

• logb n grows super slow compared to nq

• bn grows super fast compared to nq

for any positive power q > 0 and base b > 1.
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