0. Fill-in-the boxes. All series \sum and \sum_{n} are understood to be $\sum_{n=1}^{\infty}$, unless otherwise indicated.

Positive-Termed Series Criteria

(so for $\sum a_{n}$ where $a_{n} \geq 0$)
Let $\sum a_{n}$ be a positive-termed series. We consider its sequence of partial sums $\left\{s_{n}\right\}_{n}$ where

$$
s_{n} \stackrel{\text { def }}{=} \sum_{k=1}^{n} a_{k} .
$$

The behavior of series $\sum_{n} a_{n}$ is, by definition, the same as the behavoir of sequence $\left\{s_{n}\right\}_{n}$.
The key observation is that, because $a_{n} \geq 0$, the sequence $\left\{s_{n}\right\}_{n}$ is increasing (i.e., $s_{n} \leq s_{n+1}$). So: either

- the sequence of partial sums $\left\{s_{n}\right\}_{n}$ is bounded above,
i.e., there is some big number B so that for each n we have that $s_{n} \leq B, \quad$ in which case, the series $\sum a_{n}$ converges (to a finite real number)
or
- $\lim _{n \rightarrow \infty} s_{n}=\infty, \quad$ in which case, the series $\sum a_{n}$ diverges (to ∞).

Tests for Positive-Termed Series
(so for $\sum a_{n}$ where $a_{n} \geq 0$)

0a. State the Integral Test for a positive-termed series $\sum a_{n}$.
Let $f:[1, \infty) \rightarrow \mathbb{R}$ be so that

- $a_{n}=f(\square)$ for each $n \in \mathbb{N}$
- f is a \square function
- f is a \square function
- f is a

Then $\sum a_{n}$ converges if and only if \square converges.

0b. State the Direct Comparison Test (DCT) for a positive-termed series $\sum a_{n}$.
Let $N_{0} \in \mathbb{N}$.

Hint: sing the song to yourself.
0c. State the Limit Comparison Test (LCT) for a positive-termed series $\sum a_{n}$.
Let $b_{n}>0$ and $L=\lim _{n \rightarrow \infty}$

Goal: cleverly pick positive b_{n} 's so that you know what $\sum b_{n}$ does (converges or diverges) and the sequence $\left\{\frac{a_{n}}{b_{n}}\right\}_{n}$ converges.

Helpful Intuition

Claim 1: If $x>0$, then

$$
\ln x \leq x^{1} \leq e^{x}
$$

To see this, consider the function $g(x)=e^{x}-x$. Then $g(0)=1$ and $g^{\prime}(x)=e^{x}>0$ for $x>0$. So for all $x>0$, we have $g(x)>0$, i.e., $e^{x}-x>0$. So $e^{x} \geq x^{1}$.
Recall that the graph of $y=\ln x$ is the reflection of the graph of $y=e^{x}$ over the line $y=x$.

Claim 2: Consider a positive power $q>0$. There is (some big number) $N_{q}>0$ so that if $x \geq N_{q}$ then

$$
\ln x \leq x^{q} \leq e^{x}
$$

To see Claim 2, use L'Hôpital's rule to show that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\log _{e} x}{x^{q}}=0 \quad \text { and } \quad \lim _{x \rightarrow \infty} \frac{x^{q}}{e^{x}}=0 \tag{*}
\end{equation*}
$$

Claim 3: Consider a positive power $q>0$ along with a base $b>1$.
There is (some big \#) $N_{q, b}>0$ so that if $x \geq N_{q, b}$ then

$$
\log _{b} x \leq x^{q} \leq b^{x}
$$

To see Claim 3, recall that $\log _{e} x=\ln x$. Recall that for any base $b>0$ with $b \neq 1$

$$
\log _{b} x=\frac{\log _{e} x}{\log _{e} b} \quad \text { and } \quad D_{x} \log _{b} x=\frac{1}{x \ln b} \quad \text { and } \quad D_{x} b^{x}=b^{x} \ln b
$$

and $\lim _{x \rightarrow \infty} b^{x}=\infty$ if and only if $b>1$. And so $(*)$ holds if one replaces e with any base $b>1$.
Moral: To figure out what is happening to a series involving $\log _{b} n$ or b^{n}, keep in mind that as $n \rightarrow \infty$

- $\log _{b} n$ grows super slow compared to n^{q}
- b^{n} grows super fast compared to n^{q}
for any positive power $q>0$ and base $b>1$.

