
Polar Coordinates

Polar Coordinates

Our old trustly friend, Cartesian coordinates, are handy when dealing with boxy objects.
Our new friend, polar coordinates, are handy when dealing with windy/circular objects.
In this handout, let’s abbreviate:

Cartesian coordinates by CC and polar coordinates by PC .

Basics

Let’s start with a point P ∈ R2. Then P has a unique CC representation (x, y).
definition A representation of this point P in polar coordinates is any (r, θ) where

x = r cos θ and y = r sin θ .

Given an (x, y), how are you going to find such an (r, θ) ? Let’s start by asking Mr. Happy Unit Circle.

Next, some useful observations.

• When working in CC, [ (x, y) = (x̃, ỹ) ] if and only if [ x = x̃ and y = ỹ ] .
• If the point P has PC (r, θ), then P also has PC (r, θ + 2π). In other word, in PC,

(r, θ) represents the same point as (r, θ + 2π) .

This is because the point P has the unique CC (x, y) where

x = r cos θ
note
= r cos(θ + 2π)

y = r sin θ
note
= r sin(θ + 2π) .

• If the point P has PC (−r, θ), then P also has PC (r, θ + π). In other word, in PC,

(−r, θ) represents the same point as (r, θ + π) .

This is because the point P has the unique CC (x, y) where1

x = −r cos θ
note
= +r cos(θ + π)

y = −r sin θ
note
= +r sin(θ + π) .

Conversion

A point P ∈ R2 with CC (x, y) and PC (r, θ) satisfies the following.
By definition of polar coordinates:

x = r cos θ and y = r sin θ . (1)

And so by basic trigonometry:

r2 = x2 + y2 and tan θ =

{
y
x if x 6= 0

DNE if x = 0 .

So is given a point P in PC (r, θ), we can find it’s (unique) CC (x, y) by using the equation (1).
While if given a point P in CC (x, y), how to find a PC (r, θ)? . . .
There are so many choices. Well, e.g.: we can use:2

r = +
√

x2 + y2 and θ =


arctan( yx) if x > 0

arctan( yx) + π if x < 0
π
2 if x = 0 and y > 0
−π
2 if x = 0 and y < 0 ,

which gives r ≥ 0 and −π2 ≤ θ <
3π
2 . Can you think of other choices?

1Recall cos(θ + π) = − cos θ and sin(θ + π) = − sin θ .
2Recall, −π

2
< arctan θ < π

2
.
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Polar Coordinates

Polar Equations

Consider a polar equation r = f (θ). You can think of such a polar equation as a describing a parametric
curve given in CC by (use equations in (1)),

x (θ) = f (θ) cos θ

y (θ) = f (θ) sin θ .
(2)

Graphing Polar equation r = f (θ)

The period of f(θ) = cos(kθ) and of f(θ) = sin(kθ) is 2π
k .

To sketch these graphs, divide the period by 4 and make the chart.
We divide the period by 4 when making the chart in order to detect the max/min/zero’s of the function r = f(θ).

Area

Let A(r, θ) be the area of a sector of a circle with radius r and cental angle θ radians.
Comparing A(r, θ) to the area of the whole circle lead us to a proportion, which we can solve for A(r, θ):

A(r, θ)

A(r, 2π)
=

θ

2π
=⇒ A(r, θ)

πr2
=

θ

2π
=⇒ A(r, θ) =

θ

2π

πr2

1
=⇒ A(r, θ) =

θr2

2
.

So, the area of a sector of a circle with radius r and central angle ∆θ is

A(r,∆θ) =
1

2
r2 (∆θ) .

Now consider a function r = f(θ) which determines a curve in the plane where

(1) f : [α, β] → [0,∞]
(2) f is continuous on [α, β]
(3) β − α ≤ 2π .

Then the area bounded by polar curves r = f(θ) and the rays θ = α and θ = β is

A =
1

2

∫ θ=β

θ=α
[f(θ)]2 dθ .

Arc Length

If r = f (θ) has a continuous first derivative for α ≤ θ ≤ β and if the point P (r, θ) traces the curve
r = f (θ) exactly once as θ runs from α to β, then the arc)

::::::
length of the curve is

AL =

∫ β

α

√
r2 +

(
dr

dθ

)2

dθ .

Why is the so? Well, veiwing the curve that r = f (θ) traces out as a parametric curve as given in (2),
we already know that

AL =

∫ β

α

√
[x′ (θ)]2 + [y′ (θ)]2 dθ .

And [
x′ (θ)

]2
+
[
y′ (θ)

]2
= [Dθ (f (θ) cos θ)]2 + [Dθ (f (θ) sin θ)]2

=
[−f (θ) sin θ + f ′ (θ) cos θ

]2
+
[
+f (θ) cos θ + f ′ (θ) cos θ

]2
= [f (θ)]2 sin2 θ − 2f (θ) f ′ (θ) cos θ sin θ +

[
f ′ (θ)

]2
cos2 θ

+ [f (θ)]2 cos2 θ + 2f (θ) f ′ (θ) cos θ sin θ +
[
f ′ (θ)

]2
sin2 θ

= [f (θ)]2
(
sin2 θ + cos2 θ

)
+
[
f ′ (θ)

]2 (
cos2 θ + sin2 θ

)
= [f (θ)]2 +

[
f ′ (θ)

]2
= [r]2 +

[
dr

dθ

]2
.
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