A rational function $y=\frac{f(x)}{g(x)}$ (recall rational means that f and g are polyominals) has a Partial Faction Decomposition (PFD)

$$
\begin{equation*}
\underbrace{\frac{f(x)}{g(x)}}_{\text {onal function }}=\underbrace{P(x)}_{\text {a polynomial }}+\underbrace{F_{1}(x)+F_{2}(x)+\ldots+F_{k}(x)}_{\text {partial fractions }} \tag{PFD}
\end{equation*}
$$

where each partial fraction F_{i} has one of the forms

$$
\frac{A}{(p x+q)^{m}} \quad \text { or } \quad \frac{C x+D}{\left(a x^{2}+b x+c\right)^{n}}
$$

where

- $p \neq 0$ and $a \neq 0$
- m and n are integers, i.e., $n, m \in \mathbb{N}=\{1,2,3,4,5, \ldots\}$
- $a x^{2}+b x+c$ is irreducible (i.e. cannot be factored) over \mathbb{R}, (now think quad. formula) i.e., $b^{2}-4 a c<0$.

Why do we care? Well, if we can find the (PFD), then

So how to find this PFD

$$
\text { First Case: } \quad[\text { degree of } y=f(x)]<[\text { degree of } y=g(x)]
$$

In this case, $P(x)=0$ in (PFD). Begin by expressing the denominator $y=g(x)$ as a product of:

- linear factors $p x+q$
- irreducible quadratic factors $a x^{2}+b x+c$ (irreducible means that $b^{2}-4 a c<0$).

Collect up the repeated factors so that g is a product of different factors of the form $(p x+q)^{m}$ and $\left(a x^{2}+b x+c\right)^{n}$. Then apply the following rules.

Linear Rule: For each linear factor of the form $(p x+q)^{m}$,
the (PFD) contains a sum of m partial fractions of the form

$$
\frac{A_{1}}{(p x+q)^{1}}+\frac{A_{2}}{(p x+q)^{2}}+\ldots++\frac{A_{m}}{(p x+q)^{m}}
$$

where each A_{i} is a real number.
$\mathbf{I Q}^{1}$ Rule: For each IQ (so $b^{2}-4 a c<0$) factor of the form $\left(a x^{2}+b x+c\right)^{n}$,
the (PFD) contains a sum of n partial factions of the form

$$
\frac{A_{1} x+B_{1}}{\left(a x^{2}+b x+c\right)^{1}}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\ldots++\frac{A_{n} x+B_{n}}{\left(a x^{2}+b x+c\right)^{n}}
$$

where the A_{i} 's and B_{i} 's are real number.

[^0]$$
\text { Second Case: } \quad[\text { degree of } y=f(x)] \geq[\text { degree of } y=g(x)]
$$

First do long division to express $\frac{f(x)}{g(x)}$ as

$$
\frac{f(x)}{g(x)}=\underbrace{P(x)}_{\text {a polynomial }}+\underbrace{\frac{R(x)}{g(x)}}_{[\text {degree of } y=R(x)]<[\text { degree of } y=g(x)]},
$$

How to do this? Well we surely see that

$$
\frac{5}{3}=1 \frac{2}{3}=1+\frac{2}{3}
$$

we get this by long division

$$
\begin{array}{r}
1 \\
3 \sqrt{5} \\
\frac{3}{2} .
\end{array}
$$

Similarly,

$$
\frac{f(x)}{g(x)}=P(x)+\frac{R(x)}{g(x)}
$$

where

$$
\begin{array}{r}
\mathrm{P}(\mathrm{x}) \\
g(x) \sqrt{f(x)} \\
\frac{\vdots}{R(x)} .
\end{array}
$$

Now we can apply the First Case to $\frac{R(x)}{g(x)}$ since [degree of $\left.y=R(x)\right]<$ degree of $\left.y=g(x)\right]$.

A common mistake when have x^{2} in the denominator. Note that

$$
x^{2}=(x-0)^{2}=1 x^{2}+0 x+0
$$

and so $b^{2}-4 a c=0 \nless 0$. So we follow the Linear Rule to see that the partial fraction decomposition of $\frac{1}{x^{2}}$ is of the form

$$
\frac{1}{x^{2}}=\frac{A}{x^{1}}+\frac{B}{x^{2}} .
$$

Note that $A=0$ and $B=1$. A common mistake is to try to use IQ Rule, which would give

$$
\frac{1}{x^{2}} \stackrel{\text { wrong }}{=} \frac{E x+F}{x^{1}}+\frac{G x+H}{x^{2}} .
$$

This would still lead to the correct answer $(E=F=G=0$ and $H=1$) but you have to do LOTS of work to get to it.

$E \hat{x} \int \frac{x^{3}-4 x-1}{x(x-1)^{3}} d x$

i(. strictly bigger bottom? Yes/No [deg .dem.] $/$? $!\geq$, [deg.num.] $=3$

- $x=(x-0)^{1}=(\text { linear term })^{1} 2$ contribute 1 factor
- $(x-1)^{3}=(\text { linear term })^{34} 2$ contribute 3 factors

$$
\begin{aligned}
& \text { equate numerators } \\
& x^{3}-4 x-1=A(x-1)^{3}+B x(x-1)^{2}+C x(x-1)+D \times \geqslant x=0 \Rightarrow-1=-A \Rightarrow A=1 \\
& x=1 \Rightarrow-4=D
\end{aligned}
$$

equate numerators

Long Way $\rightarrow x^{3}-4 x-1=A\left(x^{3}-3 x^{2}+3 x-1\right)+B\left(x^{3}-2 x^{2}+x\right)+C\left(x^{2}-x\right)+D x$
Shorthay (multiply out s collect like terms) (ar short way.

$$
\begin{aligned}
& \text { Equate coefficients }=A x^{3}-3 A x^{2}+3 A x-1 A+B x^{3}-2 B x^{2}+B x+C x^{2}-C x+D x \\
& \left(x^{3}-4 x-1-\left(3 x^{3}-0 x^{2}-4 x-1 x^{0}=(A+B) x^{3}+(-3 A-2 B+C) x^{2}+(3 A+B-C+D) x-A\right.\right. \\
&
\end{aligned}
$$

$$
\because \Rightarrow x^{3}: 1=A+B \quad \therefore \quad 1=1+B \Rightarrow B=0
$$

$$
\begin{aligned}
& x^{2}: 0=-3 A-2 B+C \overrightarrow{ } 0=-3(1)-2(0)+C \Rightarrow C=3 \\
& x^{1}:-4=3 A+B-C+D \\
& \text { z solve for constants }
\end{aligned}
$$

$$
\text { constant: }-1=-A
$$

$$
\begin{aligned}
\int \frac{x^{3}-4 x-1}{x(x-1)^{3}} d x & =\int\left[\frac{1}{x}+\frac{0}{x-1}+\frac{3}{(x-1)^{2}}+\frac{-4}{(x-1)^{3}}\right] d x \\
& =\int \frac{d x}{x}+3 \int(x-1)^{-2} d x-4 \int(x-1)^{-3} d x \\
& =\ln |x|+\frac{3(x-1)^{-1}-4 \frac{(x-1)^{-2}}{-1}}{-2}+k \\
& =\ln |x|-\frac{3}{x-1}+\frac{2}{(x-1)^{2}}+k
\end{aligned}
$$

Ex. $\int \frac{(4 x+1)}{4 x^{2}-12 x+34} d x$

PF
. strictly bigger bottom? (deg dem.) $=2 i \sum j$ (dey hum) $=1$ (Yes

- $b^{2}-4 a c=(-12)^{2}-4(4)(34)=-400<0 \Rightarrow 4 x^{2}-12 x+34=(\text { pred. quad })^{1}$

- So $\frac{4 x+1}{4 x^{2}-12 x+34}$ is already in it's PED. So to S, use previous method
- Note $4 x^{2}-12 x+34 \frac{\text { complete }}{\text { square }}(2 x-3)^{2}+25$
- Let
$t=4 x^{2}-12 x+34$ and $u=2 x-3$
- Goal $\int \frac{4 x+1}{4 x^{2}-12 x+34} d x=(a$ constant $) \int \frac{d t}{t}+(a$ constant $) \int \frac{d u}{u^{2} \pm a^{2}}$
$\int \frac{4 x+1}{4 x^{2}-12 x+34} d x=\int \frac{[\sqrt[i n]{3}](8 x-12) d x}{4 x^{2}-12 x+34}+\int \frac{\sqrt{?}] d x}{4 x^{2}-12 x+34}$

$$
=\int \frac{\overbrace{\left(\frac{1}{2}\right)[(8 x-12) d x}^{4 x-6}}{4 x^{2}-12 x+34}+\int \frac{7 d x}{4 x^{2}-12 x+34}
$$

$$
=\frac{1}{2} \int \frac{(8 x-12) d x}{4 x^{2}-12 x+34}+7\left(\frac{1}{2}\right) \int \frac{2 d x}{(2 x-3)^{2}+25}
$$

$$
=\frac{1}{2} \int \frac{d t}{t}
$$

$$
+\frac{7}{2} \int \frac{d u}{u^{2}+5^{2}}
$$

$$
=\frac{1}{2} \ln \left|4 x^{2}-12 x+34\right|+\frac{7}{2}\left(\frac{1}{5}\right) \tan ^{-1}\left(\frac{2 x-3}{5}\right)+C
$$

[^0]: ${ }^{1}$ IQ stands for irreducible quadratic.

