Partial Fractions

A rational function y = £2 (recall rational means that f and g are polyominals)
has a Partial Faction Decomposition (PFD)
x
J@) = Px) + Fi(z) + Fx) + ... + Fi(x), (PFD)
g<x) \‘v/ N ~ 4
N~ a polynomial partial fractions

rational function
where each partial fraction F; has one of the forms
A Cx+ D

—_— or
(px +q)™ (ax? 4+ bx + c)»

where
ep#0 and a#0
e m and n are integers, i.e., n,m € N=1{1,2,3,4,5,...}
e az’+br+cisirreducible (i.e. cannot be factored) over R, (now think quad. formula) i.e., b*—4ac < 0 .

Why do we care? Well, if we can find the (PFD), then

/%dw :/P(x)dac—i— /Fl(x)dx—{—/Fg(x)d:v—l—...—l—/Fk(x)dx
T

i,ﬁ N——— S -

we want to find this easy to find each of these integral is do-able by previously learned methods

So how to find this PFD ....

First Case: [degree of y = f(x)] < [degree of y = g(z)]

In this case, P(x) = 0 in (PFD). Begin by expressing the denominator y = g(x) as a product of:

e linear factors px + ¢

e irreducible quadratic factors az® + bz + ¢ (irreducible means that b* — 4ac < 0).

Collect up the repeated factors so that g is a product of different factors of the form (px + ¢)™ and
(ax?® + bz + ¢)™. Then apply the following rules.
Linear Rule: For ecach linear factor of the form (px + ¢)™,

the (PFD) contains a sum of m partial fractions of the form
S W B
(pr+a)  (pr+q? (pz + )™

where each A; is a real number.

IQ' Rule: For each 1Q (so b* — 4ac < 0) factor of the form (az? + bx + ¢),

the (PFD) contains a sum of n partial factions of the form

A1[L’ + Bl AQIE + BQ R Anl' + Bn
(ax? + bx + ¢)! (ax? + bx + ¢)? o (az? 4+ bx + c)?

where the A;’s and B;’s are real number.

Q stands for irreducible quadratic.
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Second Case: [degree of y = f(x)] > [degree of y = g(x)]
First do long division to express % as
(@) oy s R(x) |
g(x) —~~ g(x)
a polynomial N——"

[degree of y=R(x)] < [degree of y=g(x)]
How to do this? Well we surely see that

d 2 2
212 -1 4 2,
3 3 * 3’
we get this by long division
1
3v5
3
2.
Similarly,
f(z) R(z)
— = P(x) + )
sy~ T
where
P(x)
9(x)v/ ()
R(z) .
Now we can apply the First Case to % since [degree of y = R(x)] < [degree of y = g(z)].

A common mistake when have 2 in the denominator. Note that

= (r—0)2?=12"+0x+0

and so b>—4ac = 0 £ 0. So we follow the Linear Rule to see that the partial fraction decomposition

of x% is of the form
1 A B

2 ozl a2
Note that A =0 and B = 1. A common mistake is to try to use IQ Rule, which would give
1 wrong Ex+ F n Gr+ H

el xt x?
This would still lead to the correct answer (F = F = G =0 and H = 1) but you have to do LOTS
of work to get to it.
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