Parametric Curves

In this part, fill in the 4 boxes. Consider the curve \mathcal{C} parameterized by

$$x = x(t)$$

$$y = y(t)$$

for $a \leq t \leq b$.

- 1) Express $\frac{dy}{dx}$ in terms of derivatives with respect to t. Answer: $\frac{dy}{dx} = \begin{bmatrix} \frac{dy}{dt} \\ \frac{dx}{dt} \end{bmatrix}$
- 2) The tangent line to \mathcal{C} when $t = t_0$ is y = mx + b where m is $\left| \frac{dy}{dx} \right|$ evaluated at $t = t_0$.
- 3) Express $\frac{d^2y}{dx^2}$ using derivatives with respect to t. Answer: $\frac{d^2y}{dx^2} = \begin{bmatrix} \frac{d}{dt}\left(\frac{dy}{dx}\right) \\ \frac{dx}{dt} \end{bmatrix}$
- 4) The arc length of \mathcal{C} , expressed as on integral with respect to t, is

Arc Length =
$$\int_{t=a}^{t=b} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Polar Coordinates

- ▶. Here, CC stands for Cartresian coordinates while PC stands for polar coordinates.
- •. A point with PC (r, θ) also has PC (r, θ) as well as (r, θ) as well as (r, θ) .
- •. A point $P \in \mathbb{R}^2$ with CC (x, y) and PC (r, θ) satisfies the following.

$$x = \boxed{r \cos \theta} \quad \& \quad y = \boxed{r \sin \theta} \quad \& \quad r^2 = \boxed{x^2 + y^2} \quad \& \quad \boxed{\tan \theta} = \begin{cases} \frac{y}{x} & \text{if } x \neq 0 \\ \text{DNE} & \text{if } x = 0 \end{cases}.$$

•. The period of $f(\theta) = \cos(k\theta)$ and of $f(\theta) = \sin(k\theta)$ is $\frac{2\pi}{k}$.

To sketch these graphs, we divide the period by 4 and make the chart,

in order to detect the $\max/\min/\text{zero's}$ of the function $r = f(\theta)$

•. Now consider a sufficiently *nice* function $r = f(\theta)$ which determines a curve in the plane. The the area bounded by polar curves $r = f(\theta)$ and the rays $\theta = \alpha$ and $\theta = \beta$ is

Area =
$$\int_{\theta=\alpha}^{\theta=\beta} \frac{\frac{1}{2} [f(\theta)]^2}{d\theta}$$
.

The arc length of the polar curves $r = f(\theta)$ is

Arc Length
$$=\int_{\theta=\alpha}^{\theta=\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$
.