Parametric Curves

In this part, fill in the 4 boxes. Consider the curve \mathcal{C} parameterized by

$$
\begin{aligned}
x & =x(t) \\
y & =y(t)
\end{aligned}
$$

for $a \leq t \leq b$.

1) Express $\frac{d y}{d x}$ in terms of derivatives with respect to t. Answer: $\frac{d y}{d x}=$
2) The tangent line to \mathcal{C} when $t=t_{0}$ is $y=m x+b$ where m is
3) Express $\frac{d^{2} y}{d x^{2}}$ using derivatives with respect to t. Answer: $\frac{d^{2} y}{d x^{2}}=$
4) The arc length of \mathcal{C}, expressed as on integral with respect to t, is

$$
\text { Arc Length }=\square
$$

Polar Coordinates

-. Here, CC stands for Cartresian coordinates while PC stands for polar coordinates.
-. A point with $\mathrm{PC}(r, \theta)$ also has $\mathrm{PC}(\square, \theta+2 \pi)$ as well as $(\square, \theta+\pi)$.

- A point $P \in \mathbb{R}^{2}$ with $\mathrm{CC}(x, y)$ and $\mathrm{PC}(r, \theta)$ satisfies the following.

$$
x=\square \quad \& \quad y=\square \quad r^{2}=\square \quad \& \quad \square \quad \begin{array}{ll}
\frac{y}{x} & \text { if } x \neq 0 \\
\text { DNE } & \text { if } x=0
\end{array}
$$

-. The period of $f(\theta)=\cos (k \theta)$ and of $f(\theta)=\sin (k \theta)$ is \square
To sketch these graphs, we divide the period by \square and make the chart,
in order to detect the

- Now consider a sufficiently nice function $r=f(\theta)$ which determines a curve in the plane.

The the area bounded by polar curves $r=f(\theta)$ and the rays $\theta=\alpha$ and $\theta=\beta$ is

$$
\text { Area }=\int_{\theta=\alpha}^{\theta=\beta} \square d \theta
$$

The arc length of the polar curves $r=f(\theta)$ is

$$
\text { Arc Length }=\int_{\theta=\alpha}^{\theta=\beta} \square d \theta
$$

