Parametric Curves

In this part, fill in the 4 boxes. Consider the curve ${\mathcal C}$ parameterized by

 $\begin{aligned} x &= x\left(t\right) \\ y &= y\left(t\right) \end{aligned}$

for $a \leq t \leq b$. 1) Express $\frac{dy}{dx}$ in terms of derivatives with respect to t. Answer: $\frac{dy}{dx}$ = 2) The tangent line to \mathcal{C} when $t = t_0$ is y = mx + b where m is evaluated at $t = t_0$. 3) Express $\frac{d^2y}{dr^2}$ using derivatives with respect to t. Answer: $\frac{d^2y}{dr^2}$ = 4) The arc length of \mathcal{C} , expressed as on integral with respect to t, is $\operatorname{Arc} \operatorname{Length} =$ **Polar Coordinates** ▶. Here, CC stands for *Cartresian coordinates* while PC stands for *polar coordinates*. A point with PC (r, θ) also has PC (, θ + 2π) as well as (, θ + π).
A point P ∈ ℝ² with CC (x, y) and PC (r, θ) satisfies the following. $\& \qquad \boxed{\qquad} = \begin{cases} \frac{y}{x} & \text{if } x \neq 0\\ \text{DNE} & \text{if } x = 0 \end{cases}.$ x = & y = & $r^2 =$ •. The period of $f(\theta) = \cos(k\theta)$ and of $f(\theta) = \sin(k\theta)$ is To sketch these graphs, we divide the period by and make the chart, in order to detect the •. Now consider a sufficiently *nice* function $r = f(\theta)$ which determines a curve in the plane. The the area bounded by polar curves $r = f(\theta)$ and the rays $\theta = \alpha$ and $\theta = \beta$ is Area = $\int_{\alpha}^{\theta=\beta}$ $d\theta$. The arc length of the polar curves $r = f(\theta)$ is Arc Length = $\int_{\theta=\alpha}^{\theta=\beta}$ $d\theta$.