The plane (i.e., the 2-dimensional space) \mathbb{R}^2 is $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) : x \in \mathbb{R} \text{ and } y \in \mathbb{R}\}.$

Definition

Given:

(1) an interval $I \subset \mathbb{R}$

(2) a function $f: I \to \mathbb{R}$

(3) another function $g \colon I \to \mathbb{R}$.

Then we form

(4) the function $h: I \to \mathbb{R}^2$ by letting h(t) = (f(t), g(t)) for $t \in I$. So for a fixed number $t_0 \in I \subset \mathbb{R}$, the point $h(t_0) = (f(t_0), g(t_0)) \in \mathbb{R}^2$. We call

$$\mathcal{C} = \left\{ \left(f\left(t \right), g\left(t \right) \right) \in \mathbb{R}^2 \colon t \in I \right\}$$

a paramteric (planar) curve, which is parametrized by the functions f and g. Often we write as

$$\begin{aligned} x &= f(t) \\ y &= g(t) \end{aligned} , t \in I$$

or write as

$$\begin{aligned} x &= x\left(t\right) \\ y &= y\left(t\right) \end{aligned} , \ t \in I \end{aligned}$$

▶. We think of t as time and C describing the motion of a puffo as he moves through the plane \mathbb{R}^2 .

Calculus with Parametric Curves

Consider the curve ${\mathcal C}$ parameterized by

$$\begin{aligned} x &= x \left(t \right) \\ y &= y \left(t \right) \end{aligned}$$

for $a \leq t \leq b$.

1) Express
$$\frac{dy}{dx}$$
 in terms of derivatives with respect to t . Answer: $\frac{dy}{dx} = \begin{bmatrix} \frac{dy}{dt} \\ \frac{dx}{dt} \end{bmatrix}$
2) The tangent line to C when $t = t_0$ is $y = mx + b$ where m is $\begin{bmatrix} \frac{dy}{dx} \\ \frac{dx}{dt} \end{bmatrix}$ evaluated at $t = t_0$.
3) Express $\frac{d^2y}{dx^2}$ using derivatives with respect to t . Answer: $\frac{d^2y}{dx^2} = \begin{bmatrix} \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dt}{dt}} \\ \frac{\frac{dx}{dt}}{\frac{dt}{dt}} \end{bmatrix}$

4) The arc length of \mathcal{C} , expressed as on integral with respect to t, is

Arc Length =
$$\int_{t=a}^{t=b} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

18.11.11 (yr.mn.dy)