The plane (i.e., the 2-dimensional space) \mathbb{R}^{2} is $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}=\{(x, y): x \in \mathbb{R}$ and $y \in \mathbb{R}\}$.

Definition

Given:
(1) an interval $I \subset \mathbb{R}$
(2) a function $f: I \rightarrow \mathbb{R}$
(3) another function $g: I \rightarrow \mathbb{R}$.

Then we form
(4) the function $h: I \rightarrow \mathbb{R}^{2}$ by letting $h(t)=(f(t), g(t))$ for $t \in I$.

So for a fixed number $t_{0} \in I \subset \mathbb{R}$, the point $h\left(t_{0}\right)=\left(f\left(t_{0}\right), g\left(t_{0}\right)\right) \in \mathbb{R}^{2}$. We call

$$
\mathcal{C}=\left\{(f(t), g(t)) \in \mathbb{R}^{2}: t \in I\right\}
$$

a paramteric (planar) curve, which is parametrized by the functions f and g. Often we write as

$$
\begin{aligned}
x & =f(t) \\
y & =g(t)
\end{aligned} \quad, t \in I
$$

or write as

$$
\begin{aligned}
x & =x(t) \\
y & =y(t)
\end{aligned} \quad, t \in I
$$

-. We think of t as time and \mathcal{C} describing the motion of a puffo as he moves through the plane \mathbb{R}^{2}.

Calculus with Parametric Curves

Consider the curve \mathcal{C} parameterized by

$$
\begin{aligned}
x & =x(t) \\
y & =y(t)
\end{aligned}
$$

for $a \leq t \leq b$.

1) Express $\frac{d y}{d x}$ in terms of derivatives with respect to t. Answer: $\frac{d y}{d x}=$

2) The tangent line to \mathcal{C} when $t=t_{0}$ is $y=m x+b$ where m is $\frac{d y}{d x} \quad$ evaluated at $t=t_{0}$.
3) Express $\frac{d^{2} y}{d x^{2}}$ using derivatives with respect to t. Answer: $\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}$
4) The arc length of \mathcal{C}, expressed as on integral with respect to t, is

$$
\text { Arc Length }=\quad \int_{t=a}^{t=b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

