The plane (i.e., the 2-dimensional space) \mathbb{R}^2 is $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) : x \in \mathbb{R} \text{ and } y \in \mathbb{R}\}.$

Definition

Given:

- (1) an interval $I \subset \mathbb{R}$
- (2) a function $f: I \to \mathbb{R}$
- (3) another function $g: I \to \mathbb{R}$.

Then we form

(4) the function $h: I \to \mathbb{R}^2$ by letting h(t) = (f(t), g(t)) for $t \in I$.

So for a fixed number $t_0 \in I \subset \mathbb{R}$, the point $h(t_0) = (f(t_0), g(t_0)) \in \mathbb{R}^2$. We call

$$\mathcal{C} = \left\{ (f(t), g(t)) \in \mathbb{R}^2 \colon t \in I \right\}$$

a parametrized by the functions f and g. Often we write as

$$\begin{aligned}
x &= f(t) \\
y &= g(t)
\end{aligned}, t \in I$$

or write as

$$x = x(t) y = y(t) , t \in I$$

\triangleright. We think of t as time and \mathcal{C} describing the motion of a puffo as he moves through the plane \mathbb{R}^2 .

Calculus with Parametric Curves

Consider the curve \mathcal{C} parameterized by

$$x = x(t)$$

$$y = y(t)$$

for $a \leq t \leq b$.

- 1) Express $\frac{dy}{dx}$ in terms of derivatives with respect to t. Answer: $\frac{dy}{dx} =$
- 2) The tangent line to C when $t = t_0$ is y = mx + b where m is evaluated at $t = t_0$.
- 3) Express $\frac{d^2y}{dx^2}$ using derivatives with respect to t. Answer: $\frac{d^2y}{dx^2}$ =
- 4) The arc length of \mathcal{C} , expressed as on integral with respect to t, is