#### A. Power Series

Consider the (formal) power series

$$h(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n , \qquad (1)$$

with radius of convergence  $R \in [0, \infty]$ . (Here  $x_0 \in \mathbb{R}$  is fixed and  $\{a_n\}_{n=0}^{\infty}$  is a fixed sequence of real numbers.)

Without any other further information on  $\{a_n\}_{n=0}^{\infty}$ , answer the following questions.

A.1. The choices for nest 4 boxes are: AC, CC, DIVG, anything. Here,

AC stands for: is always absolutely convergent

CC stands for: is always conditionally convergent

DIVG stands for: is always divergent

anything stands for: can do anything, i.e., there are examples showing that it can be AC, CC, or DIVG.

- (1) At the center  $x = x_0$ , the power series in (1)
- (2) For  $x \in \mathbb{R}$  such that  $|x x_0| < R$ , the power series in (1)
- (3) For  $x \in \mathbb{R}$  such that  $|x x_0| > R$ , the power series in (1)

(4) If R > 0, then for the endpoints  $x = x_0 \pm R$ , the power series in (1)

### **A.2.** Now let R > 0 and fill-in the 7 boxes.

Consider the function y = h(x) defined by the power series in (1).

(a) The function y = h(x) is always differentiable on the interval (make this interval as large as it can be, but still keeping the statement true). Also, on this interval

$$h'(x) = \sum_{n=1}^{\infty}$$
 (2)

What can you say about the radius of convergence of the power series in (2)?

(b) The function y = h(x) always has an antiderivative on the interval (make this interval as large as it can be, but still keeping the statement true). Furthermore, if  $\alpha$  and  $\beta$  are in this interval, then

# B. Taylor/Maclaurin Polynomials and Series

Let y = f(x) be a function with derivatives of all orders in an interval I containing  $x_0$ . Let  $y = P_N(x)$  be the  $N^{\text{th}}$ -order Taylor polynomial of y = f(x) about  $x_0$ . Let  $y = R_N(x)$  be the  $N^{\text{th}}$ -order Taylor remainder of y = f(x) about  $x_0$ . Let  $y = P_{\infty}(x)$  be the Taylor series of y = f(x) about  $x_0$ . Let  $c_n$  be the  $n^{\text{th}}$  Taylor coefficient of y = f(x) about  $x_0$ .

#### **B.1.** The formula for $c_n$ is

 $c_n =$ 

**B.2.** In open form (i.e., with  $\ldots$  and without a  $\sum$ -sign)

$$P_N(x) =$$

**B.3.** In closed form (i.e., with a  $\sum$ -sign and without ...)

$$P_N(x) =$$

**B.4.** In open form (i.e., with  $\ldots$  and without a  $\sum$ -sign)

$$P_{\infty}(x) =$$

**B.5.** In closed form (i.e., with a  $\sum$ -sign and without ... )

$$P_{\infty}(x) =$$

**B.6.** We know that  $f(x) = P_N(x) + R_N(x)$ . Taylor's BIG Theorem tells us that, for each  $x \in I$ ,

| $R_N(x) =$ | for some $c$ between | and |  |
|------------|----------------------|-----|--|
|            |                      |     |  |

**B.7.** A Maclaurin series is a Taylor series with the center specifically specified as  $x_0 =$ 

# C. Commonly Used Taylor Series

Here, *expansion* refers to the power series expansion that is the Maclaurin series.

