0. Fill-in-the boxes.

Power Series Consider the (formal) power series

$$
\begin{equation*}
h(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \tag{1}
\end{equation*}
$$

with radius of convergence $R \in[0, \infty]$.
(Here $x_{0} \in \mathbb{R}$ is fixed and $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a fixed sequence of real numbers.)
Without any other further information on $\left\{a_{n}\right\}_{n=0}^{\infty}$, answer the following questions.
0.1. First let $0<R<\infty$. The largest set of x 's for which we know that the power series in (1) is:

What can you say about the convergence of the power series in (1) when $x=x_{0}+R$ or $x=x_{0}-R$?
the series can be doing anything, i.e., there are examples showing that it can be absolutely convergent, conditionally convergent or divergent
$\mathbf{0 . 2}$. Now let $R=\infty$. The largest set of x 's for which we know that the power series in (1) is:
(a) absolutely convergent is \mathbb{R}, also ok: $\left\{x \in \mathbb{R}:\left|x-x_{0}\right|<R\right\}$
(b) divergent is $\emptyset \quad$, also ok: the empty set
0.3. Now let $R=0$. The largest set of x 's for which we know that the power series in (1) is:
(a) absolutely convergent is $\left\{x_{0}\right\} \quad$, also ok: $\left\{x \in \mathbb{R}: x=x_{0}\right\}$
(b) divergent is $\quad\left(-\infty, x_{0}\right) \cup\left(x_{0}, \infty\right) \quad$ also ok: $\left\{x \in \mathbb{R}: x \neq x_{0}\right\}$ or $\mathbb{R} \backslash\left\{x_{0}\right\}$.
0.4. Now let $R>0$ and fill-in the 5 boxes.

Consider the function $y=h(x)$ defined by the power series in (11).
(a) The function $y=h(x)$ is always differentiable on the interval $\left(x_{0}-R, x_{0}+R\right)$ (make this interval as large as it can be, but still keeping the statement true). Furthermore, on this interval

$$
\begin{equation*}
h^{\prime}(x)=\sum_{n=1}^{\infty} \quad n a_{n}\left(x-x_{0}\right)^{n-1} \tag{2}
\end{equation*}
$$

What can you say about the radius of convergence of the power series in (2)? It's the same R.
(b) The function $y=h(x)$ always has an antiderivative on the interval $\left(x_{0}-R, x_{0}+R\right)$ (make this interval as large as it can be, but still keeping the statement true). Futhermore, if α and β are in this interval, then

$$
\int_{x=\alpha}^{x=\beta} h(x) d x=\sum_{n=0}^{\infty} \quad \frac{a_{n}}{n+1}\left(x-x_{0}\right)^{n+1}
$$

