0. Fill-in-the boxes.

Power Series Consider the (formal) power series

$$h(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n , \qquad (1)$$

with radius of convergence $R \in [0, \infty]$.

(Here $x_0 \in \mathbb{R}$ is fixed and $\{a_n\}_{n=0}^{\infty}$ is a fixed sequence of real numbers.)

Without any other further information on $\{a_n\}_{n=0}^{\infty}$, answer the following questions.

- **0.1.** First let $0 < R < \infty$. The largest set of x's for which we know that the power series in (1) is:
 - (a) absolutely convergent is $(x_0 R, x_0 + R)$, also ok: $\{x \in \mathbb{R} : |x x_0| < R\}$
 - (b) divergent is $(-\infty, x_0 R) \cup (x_0 + R, \infty)$, also ok: $\{x \in \mathbb{R} : |x x_0| > R\}$

What can you say about the convergence of the power series in (1) when $x = x_0 + R$ or $x = x_0 - R$? the series can be doing anything, i.e., there are examples showing that it can be absolutely convergent, conditionally convergent or divergent

- **0.2.** Now let $R = \infty$. The largest set of x's for which we know that the power series in (1) is:
 - (a) absolutely convergent is \mathbb{R} , also ok: $\{x \in \mathbb{R} : |x x_0| < R\}$
 - (b) divergent is $$\emptyset $$, also ok: the empty set
- **0.3.** Now let R = 0. The largest set of x's for which we know that the power series in (1) is:
 - (a) absolutely convergent is x_0 , also ok: $x \in \mathbb{R}$: $x = x_0$
 - (b) divergent is $(-\infty, x_0) \cup (x_0, \infty)$, also ok: $\{x \in \mathbb{R} : x \neq x_0\}$ or $\mathbb{R} \setminus \{x_0\}$
- **0.4.** Now let R > 0 and fill-in the 5 boxes.

Consider the function y = h(x) defined by the power series in (1).

(a) The function y = h(x) is always differentiable on the interval $(x_0 - R, x_0 + R)$ (make this interval as large as it can be, but still keeping the statement true). Furthermore, on this interval

$$h'(x) = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1}$$
 (2)

What can you say about the radius of convergence of the power series in (2)? It's the same R

(b) The function y = h(x) always has an antiderivative on the interval $(x_0 - R, x_0 + R)$ (make this interval as large as it can be, but still keeping the statement true). Furthermore, if α and β are in this interval, then

$$\int_{x=\alpha}^{x=\beta} h(x) dx = \sum_{n=0}^{\infty} \left[\frac{a_n}{n+1} (x-x_0)^{n+1} \right]_{\mathbf{x}=\alpha}^{\mathbf{x}=\beta}$$