0. Fill-in-the boxes.

Power Series Consider the (formal) power series

$$h(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n , \qquad (1)$$

with radius of convergence $R \in [0, \infty]$.

(Here $x_0 \in \mathbb{R}$ is fixed and $\{a_n\}_{n=0}^{\infty}$ is a fixed sequence of real numbers.)

Without any other further information on $\{a_n\}_{n=0}^{\infty}$, answer the following questions.

0.1. First let $0 < R < \infty$. The largest set of x's for which we know that the power series in (1) is:

- (a) absolutely convergent is _____
- (b) divergent is _____

What can you say about the convergence of the power series in (1) when $x = x_0 + R$ or $x = x_0 - R$?

0.2. Now let $R = \infty$. The largest set of x's for which we know that the power series in (1) is:

- (a) absolutely convergent is
- (b) divergent is _____

0.3. Now let R = 0. The largest set of x's for which we know that the power series in (1) is:

- (a) absolutely convergent is _____
- (b) divergent is _____

0.4. Now let R > 0 and fill-in the 5 boxes.

Consider the function y = h(x) defined by the power series in (1).

(a) The function y = h(x) is <u>always differentiable</u> on the interval (make this interval as large as it can be, but still keeping the statement true). Furthermore, on this interval

$$h'(x) = \sum_{n=1}^{\infty} \tag{2}$$

What can you say about the radius of convergence of the power series in (2)?

(b) The function y = h(x) always has an antiderivative on the interval

(make this interval as large as it can be, but still keeping the statement true). Futhermore, if α and β are in this interval, then