0A. Power Series Consider the (formal) power series

$$
\begin{equation*}
h(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \tag{1}
\end{equation*}
$$

with radius of convergence $R \in[0, \infty]$.
(Here $x_{0} \in \mathbb{R}$ is fixed and $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a fixed sequence of real numbers.)
Without any other further information on $\left\{a_{n}\right\}_{n=0}^{\infty}$, answer the following questions.
If you are having troubles, see the $\S 10.7$ handout Operations on Power Series at
http://people.math.sc.edu/girardi/m142/handouts/OperationsOnPowerSeries.pdf .

- First let $0<R<\infty$. The largest set of x 's for which we know that the power series in (1) is:
(a) absolutely convergent is

$$
\left(x_{0}-R, x_{0}+R\right) \quad, \text { also ok: }\left\{x \in \mathbb{R}:\left|x-x_{0}\right|<R\right\}
$$

(b) divergent is $\quad\left(-\infty, x_{0}-R\right) \cup\left(x_{0}+R, \infty\right) \quad$, also ok: $\left\{x \in \mathbb{R}:\left|x-x_{0}\right|>R\right\}$

What can you say about the convergence of the power series in (1) when $x=x_{0}+R$ or $x=x_{0}-R$?
the series can be doing anything, i.e., there are examples showing that it can be absolutely convergent, conditionally convergent or divergent

- Now let $R=\infty$. The largest set of x 's for which we know that the power series in (1) is:
(a) absolutely convergent is
$\mathbb{R} \quad$, also ok: $\left\{x \in \mathbb{R}:\left|x-x_{0}\right|<R\right\}$
(b) divergent is \qquad \emptyset , also ok: the empty set
- . Now let $R=0$. The largest set of x 's for which we know that the power series in (1) is:
(a) absolutely convergent is \qquad , also ok: $\left\{x \in \mathbb{R}: x=x_{0}\right\}$
(b) divergent is
$\left(-\infty, x_{0}\right) \cup\left(x_{0}, \infty\right)$, also ok: $\left\{x \in \mathbb{R}: x \neq x_{0}\right\}$ or $\mathbb{R} \backslash\left\{x_{0}\right\}$
-. Now let $R>0$ and fill-in the 5 boxes.
Consider the function $y=h(x)$ defined by the power series in (1).
(a) The function $y=h(x)$ is always differentiable on the interval

$$
\left(x_{0}-R, x_{0}+R\right) \text { (make }
$$ this interval as large as it can be, but still keeping the statement true). Furthermore, on this interval

$$
\begin{equation*}
h^{\prime}(x)=\sum_{n=1}^{\infty} \quad n a_{n}\left(x-x_{0}\right)^{n-1} \tag{2}
\end{equation*}
$$

What can you say about the radius of convergence of the power series in (2)? It's the same R.
(b) The function $y=h(x)$ always has an antiderivative on the interval $\left(x_{0}-R, x_{0}+R\right)$ (make this interval as large as it can be, but still keeping the statement true). Futhermore, if α and β are in this interval, then

$$
\int_{x=\alpha}^{x=\beta} h(x) d x=\left.\sum_{n=0}^{\infty} \quad \frac{a_{n}}{n+1}\left(x-x_{0}\right)^{n+1}\right|_{\mathbf{x}=\alpha} ^{\mathbf{x}=\beta}
$$

0B. Taylor/Maclaurin Polynomials and Series. Fill-in the boxes.
If you are having troubles, see the class handout for $\S 10.8$ at
http://people.math.sc.edu/girardi/m142/handouts/16sTaylorPoly.pdf
and the handout for $\S 10.8 / 9 / 10$ at
http://people.math.sc.edu/girardi/m142/handouts/16sTaylorSeries.pdf .
Let $y=f(x)$ be a function with derivatives of all orders in an interval I containing x_{0}.
Let $y=P_{N}(x)$ be the $N^{\text {th }}$-order Taylor polynomial of $y=f(x)$ about x_{0}.
Let $y=R_{N}(x)$ be the $N^{\text {th }}$-order Taylor remainder of $y=f(x)$ about x_{0}.
Let $y=P_{\infty}(x)$ be the Taylor series of $y=f(x)$ about x_{0}.
Let c_{n} be the $n^{\text {th }}$ Taylor coefficient of $y=f(x)$ about x_{0}.
a. In open form (i.e., with "..." notation and without a \sum-sign)

$$
P_{N}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{(2)}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\frac{f^{(3)}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3}+\cdots+\frac{f^{(N)}\left(x_{0}\right)}{N!}\left(x-x_{0}\right)^{N}
$$

b. In closed form (i.e., with a \sum-sign and without "..." notation)

$$
P_{N}(x)=\square \sum_{n=0}^{N} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

c. In open form (i.e., with "..." notation and without a \sum-sign)

$$
P_{\infty}(x)=\quad f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{(2)}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+\ldots
$$

d. In closed form (i.e., with a \sum-sign and without ". . ." notation)

$$
P_{\infty}(x)=\quad \sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

e. The formula for c_{n} is

$$
c_{n}=\square \frac{f^{(n)}\left(x_{0}\right)}{n!}
$$

f. We know that $f(x)=P_{N}(x)+R_{N}(x)$. Taylor's BIG Theorem tells us that, for each $x \in I$,

$$
R_{N}(x)=\square \frac{f^{(N+1)}(c)}{(N+1)!}\left(x-x_{0}\right)^{(N+1)} \text { for some } c \text { between } \square x
$$

g. A Maclaurin series is a Taylor series with the center specifically specified as $x_{0}=\square 0$

