0A. Power Series Consider the (formal) power series

$$h(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n , \qquad (1)$$

with radius of convergence $R \in [0, \infty]$. (Here $x_0 \in \mathbb{R}$ is fixed and $\{a_n\}_{n=0}^{\infty}$ is a fixed sequence of real numbers.)

Without any other further information on $\{a_n\}_{n=0}^{\infty}$, answer the following questions.

If you are having troubles, see the §10.7 handout Operations on Power Series at

http://people.math.sc.edu/girardi/m142/handouts/OperationsOnPowerSeries.pdf .

- •. First let $0 < R < \infty$. The largest set of x's for which we know that the power series in (1) is:
 - (a) absolutely convergent is $(x_0 R, x_0 + R)$, also ok: $\{x \in \mathbb{R} : |x x_0| < R\}$
 - (b) divergent is $(-\infty, x_0 R) \cup (x_0 + R, \infty)$, also ok: $\{x \in \mathbb{R} : |x x_0| > R\}$.

What can you say about the convergence of the power series in (1) when $x = x_0 + R$ or $x = x_0 - R$?

the series can be doing anything, i.e., there are examples showing that it can be absolutely convergent, conditionally convergent or divergent

- •. Now let $R = \infty$. The largest set of x's for which we know that the power series in (1) is:
 - (a) absolutely convergent is \mathbb{R} , also ok: $\{x \in \mathbb{R} : |x x_0| < R\}$
 - (b) divergent is \emptyset , also ok: the empty set
- •. Now let R=0. The largest set of x's for which we know that the power series in (1) is:
 - (a) absolutely convergent is $\{x_0\}$, also ok: $\{x \in \mathbb{R} : x = x_0\}$
 - (b) divergent is $(-\infty, x_0) \cup (x_0, \infty)$, also ok: $\{x \in \mathbb{R} : x \neq x_0\}$ or $\mathbb{R} \setminus \{x_0\}$
- •. Now let R > 0 and fill-in the 5 boxes.

Consider the function y = h(x) defined by the power series in (1).

(a) The function y = h(x) is always differentiable on the interval $(x_0 - R, x_0 + R)$ this interval as large as it can be, but still keeping the statement true). Furthermore, on this interval

$$h'(x) = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1}$$
 (2)

What can you say about the radius of convergence of the power series in (2)? It's the same R

(b) The function y = h(x) always has an antiderivative on the interval $| (x_0 - R, x_0 + R)$ (make this interval as large as it can be, but still keeping the statement true). Furthermore, if α and β are in this interval, then

$$\int_{x=\alpha}^{x=\beta} h(x) \, dx = \sum_{n=0}^{\infty} \left[\frac{a_n}{n+1} (x-x_0)^{n+1} \right]_{\mathbf{x}=\alpha}^{\mathbf{x}=\beta}$$

0B. Taylor/Maclaurin Polynomials and Series. Fill-in the boxes.

If you are having troubles, see the class handout for §10.8 at

http://people.math.sc.edu/girardi/m142/handouts/16sTaylorPoly.pdf

and the handout for $\S10.8/9/10$ at

http://people.math.sc.edu/girardi/m142/handouts/16sTaylorSeries.pdf .

Let y = f(x) be a function with derivatives of all orders in an interval I containing x_0 .

Let $y = P_N(x)$ be the Nth-order Taylor polynomial of y = f(x) about x_0 .

Let $y = R_N(x)$ be the N^{th} -order Taylor remainder of y = f(x) about x_0 .

Let $y = P_{\infty}(x)$ be the Taylor series of y = f(x) about x_0 .

Let c_n be the n^{th} Taylor coefficient of y = f(x) about x_0 .

a. In open form (i.e., with "..." notation and without a \sum -sign)

$$P_N(x) = \left| f(x_0) + f'(x_0)(x - x_0) + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2 + \frac{f^{(3)}(x_0)}{3!}(x - x_0)^3 + \dots + \frac{f^{(N)}(x_0)}{N!}(x - x_0)^N \right|$$

b. In closed form (i.e., with a \sum -sign and without "..." notation)

$$P_N(x) = \sum_{n=0}^{N} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

 $\mathbf{c.}$ In open form (i.e., with "..." notation and without a $\sum\text{-sign})$

$$P_{\infty}(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots$$

d. In closed form (i.e., with a \sum -sign and without "..." notation)

$$P_{\infty}(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

e. The formula for c_n is

$$c_n = \frac{f^{(n)}(x_0)}{n!}$$

f. We know that $f(x) = P_N(x) + R_N(x)$. Taylor's BIG Theorem tells us that, for each $x \in I$,

$$R_N(x) = \frac{f^{(N+1)}(c)}{(N+1)!} (x-x_0)^{(N+1)}$$
 for some c between x and x_0

g. A Maclaurin series is a Taylor series with the center specifically specified as $x_0 = 0$