0A. Power Series Consider the (formal) power series

$$h(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n , \qquad (1)$$

with radius of convergence $R \in [0, \infty]$. (Here $x_0 \in \mathbb{R}$ is fixed and $\{a_n\}_{n=0}^{\infty}$ is a fixed sequence of real numbers.) Without any other further information on $\{a_n\}_{n=0}^{\infty}$, answer the following questions. If you are having troubles, see the §10.7 handout *Operations on Power Series* at http://people.math.sc.edu/girardi/m142/handouts/OperationsOnPowerSeries.pdf .

- •. <u>First let $0 < R < \infty$ </u>. The largest set of x's for which we know that the power series in (1) is:
 - (a) absolutely convergent is _____
 - (b) divergent is _____

What can you say about the convergence of the power series in (1) when $x = x_0 + R$ or $x = x_0 - R$?

- •. <u>Now let $R = \infty$ </u>. The largest set of x's for which we know that the power series in (1) is:
 - (a) absolutely convergent is
 - (b) divergent is _____

•. <u>Now let R = 0</u>. The largest set of x's for which we know that the power series in (1) is:

- (a) absolutely convergent is _____
- (b) divergent is _____
- •. <u>Now let R > 0</u> and fill-in the 5 boxes.
 - Consider the function y = h(x) defined by the power series in (1).

(a) The function y = h(x) is always differentiable on the interval $\$ (make this interval as large as it can be, but still keeping the statement true). Furthermore, on this interval

$$h'(x) = \sum_{n=1}^{\infty}$$
 (2)

What can you say about the radius of convergence of the power series in (2)?

(b) The function y = h(x) always has an antiderivative on the interval (make this interval as large as it can be, but still keeping the statement true). Furthermore, if α and β are in this interval, then

$$\int_{x=\alpha}^{x=\beta} h(x) \, dx = \sum_{n=0}^{\infty} \left[\left. \right]_{\mathbf{x}=\alpha}^{\mathbf{x}=\beta} \right]_{\mathbf{x}=\alpha}^{\mathbf{x}=\beta}$$

0B. Taylor/Maclaurin Polynomials and Series. Fill-in the boxes. If you are having troubles, see the class handout for §10.8 at

Let y = f(x) be a function with derivatives of all orders in an interval I containing x_0 .

Let $y = P_N(x)$ be the Nth-order Taylor polynomial of y = f(x) about x_0 .

Let $y = R_N(x)$ be the Nth-order Taylor remainder of y = f(x) about x_0 .

Let $y = P_{\infty}(x)$ be the Taylor series of y = f(x) about x_0 .

Let c_n be the n^{th} Taylor coefficient of y = f(x) about x_0 .

a. In open form (i.e., with "..." notation and without a \sum -sign)

$$P_N(x) =$$

b. In closed form (i.e., with a \sum -sign and without "..." notation)

$$P_N(x) =$$

c. In open form (i.e., with "..." notation and without a \sum -sign)

$$P_{\infty}(x) =$$

d. In closed form (i.e., with a \sum -sign and without "..." notation)

$$P_{\infty}(x) =$$

e. The formula for c_n is

$$c_n =$$

f. We know that $f(x) = P_N(x) + R_N(x)$. Taylor's BIG Theorem tells us that, for each $x \in I$,

g. A Maclaurin series is a Taylor series with the center specifically specified as $x_0 = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$