0. Fill-in-the boxes. All series \sum are understood to be $\sum_{n=1}^{\infty}$, unless otherwise indicated.

Sequences

0.1. Practice taking basic limits of sequences. (Important, e.g., for Ratio and Root Tests.) Can you do similar problems?

- $\lim _{n \rightarrow \infty} \frac{5 n^{17}+6 n^{2}+1}{7 n^{18}+9 n^{3}+5}=\square 0$
- $\lim _{n \rightarrow \infty} \sqrt{\frac{36 n^{17}-6 n^{2}-1}{4 n^{17}+9 n^{3}+5}}=\sqrt{\sqrt{\frac{36}{4}} \text { or } 3}$
- $\lim _{n \rightarrow \infty} \frac{-5 n^{18}+6 n^{2}+1}{7 n^{17}+9 n^{3}+5}=$ DNE or $-\infty$
- $\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1$
0.2. Geometric Sequence. Fill in the boxes with with the proper range of $r \in \mathbb{R}$. (Needed for Geometric Series!)
- $\lim _{n \rightarrow \infty} r^{n}=0$ if and only if r satisfies $\quad|r|<1 \quad$ also ok: $-1<r<1$ or $r \in(-1,1)$.
- $\lim _{n \rightarrow \infty} r^{n}=1$ if and only if r satisfies $\square r=1$.
- the sequence $\left\{r^{n}\right\}_{n=1}^{\infty}$ diverges to ∞ if and only if r satisfies $\quad r>1 \quad$ also ok: $r \in(1, \infty)$.
- the sequence $\left\{r^{n}\right\}_{n=1}^{\infty}$ diverges but does not diverge to ∞ if and only if r satisfies $\begin{gathered}\begin{array}{c}r \leq-1 \text { also ok: } \\ r \in(-\infty,-1]\end{array}\end{gathered}$.
0.3. Commonly Occurring Limits of Sequences. Here, $c \in \mathbb{R}$ is a constant. 〈Thomas Book §10.1, Theorem 5
(1) $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=\square 0$
(2) $\lim _{n \rightarrow \infty} \sqrt[n]{n}=\square$
(3) $\lim _{n \rightarrow \infty} c^{1 / n}=\square(c>0)$
(4) $\lim _{n \rightarrow \infty} c^{n}=\square(|c|<1)$
(5) $\lim _{n \rightarrow \infty}\left(1+\frac{c}{n}\right)^{n}=\square(c \in \mathbb{R})$
(6) $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=\square 0 \quad(c \in \mathbb{R})$

Series

0.4. For a formal series $\sum_{n=1}^{\infty} a_{n}$, where each $a_{n} \in \mathbb{R}$, consider the corresponding sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ of partial sums, so $s_{n}=\sum_{k=1}^{n} a_{k}$. Then the formal series $\sum a_{n}$:

- converges if and only if \quad the $\lim _{n \rightarrow \infty} s_{n}$ exists
- converges to $L \in \mathbb{R}$ if and only if $\square \quad$ the $\lim _{n \rightarrow \infty} s_{n}$ exists and $\lim _{n \rightarrow \infty} s_{n}=L$
- diverges if and only if \qquad .

Now assume, furthermore, that $a_{n} \geq 0$ for each n. Then the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ of partial sums either

- is bounded above (by some finite number), in which case the series $\sum a_{n} \quad$ converges or
\bullet is not bounded above (by some finite number), in which case the series $\sum a_{n}$ diverges to $^{+} \infty$.
0.5. Fix $r \in \mathbb{R}$ with $r \neq 1$. For $N \geq 50$, let $s_{N}=\sum_{\mathbf{n}=50}^{N} r^{n}$. (Note the sum starts at 50 .) For each $N \geq 50$, the partial sums s_{N} can be written as: (your answer should NOT contain a ". . ." nor a " \sum " sign)

$$
s_{N}=\quad \frac{r^{50}-r^{N+1}}{1-r}
$$

0.6. Geometric Series. Fill in the boxes with the proper range of $r \in \mathbb{R}$.

- The series $\sum r^{n}$ converges if and only if r satisfies $\quad \square|r|<1$.
0.7. State the $n^{\text {th }}$-term test for an arbitrary series $\sum a_{n}$.

If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ (which includes the case that $\lim _{n \rightarrow \infty} a_{n}$ does not exist), then $\sum a_{n}$ diverges .
0.8. p-series. Fill in the boxes with the proper range of $p \in \mathbb{R}$.

- The series $\sum \frac{1}{n^{p}}$ converges if and only if $\quad p>1$.

Tests for Positive-Termed Series

(so for $\sum a_{n}$ where $a_{n} \geq 0$)
0.9. State the Integral Test with Remainder Estimate for a positive-termed series $\sum a_{n}$.

Let $f:[1, \infty) \rightarrow \mathbb{R}$ be so that
(1) $a_{n}=f(n)$ for each $n \in \mathbb{N}$
(2) f is a
(3) f is a

positive
continuous decreasing (nonincreasing is also ok)

(4) f is a \square function function.

Then

- $\sum a_{n}$ converges if and only if $\square \int_{x=1}^{x=\infty} f(x) d x \quad$ converges.
- and if $\sum a_{n}$ converges, then

$$
0 \leq\left(\sum_{k=1}^{\infty} a_{k}\right)-\left(\sum_{k=1}^{N} a_{k}\right) \leq \square \int_{x=N}^{x=\infty} f(x) d x
$$

0.10. State the Direct Comparison Test for a positive-termed series $\sum a_{n}$.

Hint: sing the song to yourself.
0.11. State the Limit Comparison Test for a positive-termed series $\sum a_{n}$.

Let $b_{n}>0$ and $L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$.

- If $0<L<\infty$, then $\quad\left[\sum b_{n}\right.$ converges $\Longleftrightarrow \sum a_{n}$ converges]
- If $L=0$, then $\quad\left[\sum b_{n}\right.$ converges $\Longrightarrow \sum a_{n}$ converges $]$.
- If $L=\infty$, then
$\left[\sum b_{n}\right.$ diverges $\Longrightarrow \sum a_{n}$ diverges $]$.

Goal: cleverly pick positive b_{n} 's so that you know what $\sum b_{n}$ does (converges or diverges) and the sequence $\left\{\frac{a_{n}}{b_{n}}\right\}_{n}$ converges.
0.12. Helpful Intuition Fill in the 3 boxes using: $e^{x}, \ln x, x^{q}$. Use each once, and only once.

Consider a positive power $q>0$. There is (some big number) $N_{q}>0$ so that if $x \geq N_{q}$ then

Tests for Arbitrary-Termed Series

(so for $\sum a_{n}$ where $-\infty<a_{n}<\infty$)
0.13. By definition, for an arbitrary series $\sum a_{n}$, (fill in these 3 boxes with convergent or divergent).

- $\sum a_{n}$ is absolutely convergent if and only if $\sum\left|a_{n}\right|$ is \quad convergent .
- $\sum a_{n}$ is conditionally convergent if and only if

$$
\sum a_{n} \text { is } \quad \text { convergent } \text { and } \sum\left|a_{n}\right| \text { is } \text { divergent } .
$$

- $\sum a_{n}$ is divergent if and only if $\sum a_{n}$ is divergent.
0.14. State the Ratio and Root Tests for arbitrary-termed series $\sum a_{n}$ with $-\infty<a_{n}<\infty$. Let

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \quad \text { or } \quad \rho=\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}
$$

- If $\quad \rho<1$ then $\sum a_{n}$ converges absolutely.
- If $\quad \rho>1$ then $\sum a_{n}$ diverges.
- If $\quad \rho=1$ then the test is inconclusive.

0.15. State the Alternating Series Test (AST) \& Alternating Series Estimation Theorem.

Let
(1) $u_{n} \geq 0$ for each $n \in \mathbb{N}$
(2) $\lim _{n \rightarrow \infty} u_{n}=0$
(3) $u_{n}>($ also ok $\geq) \quad u_{n+1}$ for each $n \in \mathbb{N}$.

Then

- the series $\sum(-1)^{n} u_{n}$ converges. (also ok: $\sum(-1)^{n+1} u_{n}$ converges or $\sum(-1)^{n-1} u_{n}$ converges)
- and we can estimate (i.e., approximate) the infinite sum $\sum_{n=1}^{\infty}(-1)^{n} u_{n}$ by the finite sum $\sum_{k=1}^{N}(-1)^{k} u_{k}$ and the error (i.e. remainder) satisfies

$$
\left|\sum_{k=1}^{\infty}(-1)^{k} u_{k}-\sum_{k=1}^{N}(-1)^{k} u_{k}\right| \leq u_{N+1}
$$

