0. Fill-in-the boxes. All series \sum are understood to be $\sum_{n=1}^\infty$, unless otherwise indicated.

Sequences

0.1. Practice taking basic limits of sequences. (Important, e.g., for Ratio and Root Tests.) Can you do similar problems?

0.2. Geometric Sequence. Fill in the boxes with with the proper range of $r \in \mathbb{R}$. (Needed for Geometric Series!)

lim_{n→∞} rⁿ = 0 if and only if r satisfies |r| < 1 also ok: -1 < r < 1 or r ∈ (-1, 1) .
lim_{n→∞} rⁿ = 1 if and only if r satisfies r = 1 .
the sequence {rⁿ}[∞]_{n=1} diverges to ∞ if and only if r satisfies r > 1 also ok: r ∈ (1,∞) .
the sequence {rⁿ}[∞]_{n=1} diverges but does not diverge to ∞ if and only if r satisfies r ≤ -1 also ok: r ∈ (-∞, -1] .

0.3. Commonly Occurring Limits of Sequences.

Here, $c \in \mathbb{R}$ is a constant.

 \langle Thomas Book §10.1, Theorem 5

Series

0.4. For a formal series $\sum_{n=1}^{\infty} a_n$, where each $a_n \in \mathbb{R}$, consider the corresponding sequence $\{s_n\}_{n=1}^{\infty}$ of partial sums, so $s_n = \sum_{k=1}^n a_k$. Then the formal series $\sum a_n$:

- converges if and only if the $\lim_{n\to\infty} s_n$ exists
- converges to $L \in \mathbb{R}$ if and only if the $\lim_{n \to \infty} s_n$ exists and $\lim_{n \to \infty} s_n = L$
- diverges if and only if the $\lim_{n\to\infty} s_n$ does not exist

Now assume, furthermore, that $a_n \ge 0$ for each n. Then the sequence $\{s_n\}_{n=1}^{\infty}$ of partial sums <u>either</u>

• is bounded above (by some finite number), in which case the series $\sum a_n$ converges or

• is not bounded above (by some finite number), in which case the series $\sum a_n$ diverges to $+\infty$

0.5. Fix $r \in \mathbb{R}$ with $r \neq 1$. For $N \geq 50$, let $s_N = \sum_{n=50}^{N} r^n$. (Note the sum starts at 50.) For each $N \geq 50$,

the partial sums s_N can be written as: (your answer should NOT contain a "..." nor a " \sum " sign)

$$s_N = \frac{r^{50} - r^{N+1}}{1-r}$$
.

0.6. Geometric Series. Fill in the boxes with the proper range of $r \in \mathbb{R}$.

• The series $\sum r^n$ converges if and only if r satisfies |r| < 1

0.7. State the n^{th} -term test for an arbitrary series $\sum a_n$.

If $\lim_{n\to\infty} a_n \neq 0$ (which includes the case that $\lim_{n\to\infty} a_n$ does not exist), then $\sum a_n$ diverges.

0.8. *p*-series. Fill in the boxes with the proper range of $p \in \mathbb{R}$.

• The series $\sum \frac{1}{n^p}$ converges if and only if

p > 1

0.9. State the **Integral Test with Remainder Estimate** for a positive-termed series $\sum a_n$.

• $\sum a_n$ converges if and only if $\int_{x=1}^{x=\infty} f(x) dx$ converges. • and if $\sum a_n$ converges, then $0 \leq \left(\sum_{k=1}^{\infty} a_k\right) - \left(\sum_{k=1}^{N} a_k\right) \leq \int_{x=N}^{x=\infty} f(x) dx$.

0.10. State the **Direct Comparison Test** for a <u>positive</u>-termed series $\sum a_n$.

• If	$0 \le a_n \le c_n$ (only $a_n \le c_n$ is also ok b/c given $a_n \ge 0$)	when $n \ge 17$ and	$\sum c_n$ converges	, then $\sum a_n$ converges.
• If	$0 \le d_n \le a_n$ (need $0 \le d_n$ part here)	when $n \ge 17$ and	$\sum d_n$ diverges], then $\sum a_n$ diverges.

Hint: sing the song to yourself.

0.11. State the Limit Comparison Test for a <u>positive</u>-termed series $\sum a_n$.

Let $b_n > 0$ and $L = \lim_{n \to \infty} \frac{a_n}{b_n}$. • If $0 < L < \infty$, then $[\sum b_n \text{ converges } \iff \sum a_n \text{ converges }]$ • If L = 0, then $[\sum b_n \text{ converges } \implies \sum a_n \text{ converges }]$. • If $L = \infty$, then $[\sum b_n \text{ diverges } \implies \sum a_n \text{ diverges }]$.

Goal: cleverly pick positive b_n 's so that you know what $\sum b_n$ does (converges or diverges) and the sequence $\left\{\frac{a_n}{b_n}\right\}_n$ converges.

0.12. Helpful Intuition Fill in the 3 boxes using: e^x , $\ln x$, x^q . Use each once, and only once.

Consider a positive power q > 0. There is (some big number) $N_q > 0$ so that if $x \ge N_q$ then

$$\boxed{\ln x} \leq \boxed{x^q} \leq \boxed{e^x}.$$

Tests for Arbitrary-Termed Series (so for $\sum a_n$ where $-\infty < a_n < \infty$)

0.13. By definition, for an arbitrary series $\sum a_n$, (fill in these 3 boxes with convergent or divergent).

- $\sum a_n$ is absolutely convergent if and only if $\sum |a_n|$ is convergent
- $\sum a_n$ is <u>conditionally convergent</u> if and only if

 $\sum a_n$ is convergent and $\sum |a_n|$ is divergent

• $\sum a_n$ is <u>divergent</u> if and only if $\sum a_n$ is divergent.

0.14. State the **Ratio and Root Tests** for arbitrary-termed series $\sum a_n$ with $-\infty < a_n < \infty$. Let

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \quad \text{or} \quad \rho = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}$$
• If $\rho < 1$ then $\sum a_n$ converges absolutely.
• If $\rho > 1$ then $\sum a_n$ diverges.
• If $\rho = 1$ then the test is inconclusive.

0.15. State the Alternating Series Test (AST) & Alternating Series Estimation Theorem.

Let

(1)
$$u_n \ge 0$$
 for each $n \in \mathbb{N}$
(2) $\lim_{n\to\infty} u_n =$ 0
(3) $u_n > (\text{also ok} \ge)$ u_{n+1} for each $n \in \mathbb{N}$.

Then

- the series $\sum (-1)^n u_n$ converges. (also ok: $\sum (-1)^{n+1} u_n$ converges or $\sum (-1)^{n-1} u_n$ converges)
- and we can estimate (i.e., approximate) the infinite sum $\sum_{n=1}^{\infty} (-1)^n u_n$ by the finite sum $\sum_{k=1}^{N} (-1)^k u_k$ and the error (i.e. remainder) satisfies

$$\left|\sum_{k=1}^{\infty} (-1)^{k} u_{k} - \sum_{k=1}^{N} (-1)^{k} u_{k}\right| \leq \boxed{u_{N+1}}$$