
Practice Problem 0 over Numerical Series

0. Fill-in-the boxes. All series
∑

are understood to be
∑∞

n=1 , unless otherwise indicated.

Sequences

0.1. Practice taking basic limits of
::::::::::
sequences. (Important, e.g., for Ratio and Root Tests.) Can you do similar problems?

• lim
n→∞

5n17 + 6n2 + 1

7n18 + 9n3 + 5
= 0 • lim

n→∞

√
36n17 − 6n2 − 1

4n17 + 9n3 + 5
=

√
36
4

or 3

• lim
n→∞

-5n18 + 6n2 + 1

7n17 + 9n3 + 5
= DNE or -∞ • lim

n→∞
n

1
n = 1

0.2. Geometric
:::::::::::
Sequence. Fill in the boxes with with the proper range of r ∈ R. (Needed for Geometric

:::::
Series!)

• limn→∞ r
n = 0 if and only if r satisfies |r| < 1 also ok: −1 < r < 1 or r ∈ (−1, 1) .

• limn→∞ r
n = 1 if and only if r satisfies r = 1 .

• the sequence {rn}∞n=1 diverges to∞ if and only if r satisfies r > 1 also ok: r ∈ (1,∞) .

• the sequence {rn}∞n=1 diverges but does not diverge to∞ if and only if r satisfies
r ≤ −1 also ok:
r ∈ (−∞,−1] .

0.3. Commonly Occurring Limits of Sequences. Here, c ∈ R is a constant. 〈Thomas Book §10.1, Theorem 5 page 578〉

(1) lim
n→∞

lnn

n
= 0

(2) lim
n→∞

n
√
n = 1

(3) lim
n→∞

c1/n = 1 (c > 0)

(4) lim
n→∞

cn = 0 (|c| < 1)

(5) lim
n→∞

(
1 + c

n

)n
= ec (c ∈ R)

(6) lim
n→∞

xn

n!
= 0 (c ∈ R)
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Practice Problem 0 over Numerical Series

Series

0.4. For a formal
:::::
series

∑∞
n=1 an, where each an ∈ R, consider the corresponding

::::::::
sequence {sn}∞n=1 of

partial sums, so sn =
∑n

k=1 ak. Then the formal series
∑
an :

• converges if and only if the limn→∞ sn exists

• converges to L ∈ R if and only if the limn→∞ sn exists and limn→∞ sn = L

• diverges if and only if the limn→∞ sn does not exist .

Now assume, furthermore, that an ≥ 0 for each n. Then the
:::::::::
sequence {sn}∞n=1 of partial sums

::::::
either

• is bounded above (by some finite number), in which case the series
∑
an converges

::
or

• is not bounded above (by some finite number), in which case the series
∑
an diverges to +∞ .

0.5. Fix r ∈ R with r 6= 1. For N ≥ 50, let sN =
∑N

n=50 rn. (Note the sum starts at 50.) For each N ≥ 50,

the partial sums sN can be written as: (your answer should NOT contain a “. . .” nor a “
∑

” sign)

sN =
r50 − rN+1

1− r
.

0.6. Geometric
:::::::
Series. Fill in the boxes with the proper range of r ∈ R.

• The series
∑
rn converges if and only if r satisfies |r| < 1 .

0.7. State the nth-term test for an arbitrary
:::::
series

∑
an.

If limn→∞ an 6= 0 (which includes the case that limn→∞ an does not exist), then
∑
an diverges .

0.8. p-series. Fill in the boxes with the proper range of p ∈ R.

• The series
∑

1
np converges if and only if p > 1 .
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Practice Problem 0 over Numerical Series

Tests for Positive-Termed Series
(so for

∑
an where an ≥ 0)

0.9. State the Integral Test with Remainder Estimate for a positive-termed series
∑
an.

Let f : [1,∞)→ R be so that

(1) an = f (n) for each n ∈ N

(2) f is a positive function

(3) f is a continuous function

(4) f is a decreasing (nonincreasing is also ok) function.

Then

•
∑
an converges if and only if

∫ x=∞
x=1

f(x) dx converges.

• and if
∑
an converges, then

0 ≤

(
∞∑
k=1

ak

)
−

(
N∑
k=1

ak

)
≤

∫ x=∞

x=N

f(x) dx .

0.10. State the Direct Comparison Test for a positive-termed series
∑
an.

• If
0 ≤ an ≤ cn

(only an ≤ cn is also ok b/c given an ≥ 0)
when n ≥ 17 and

∑
cn converges , then

∑
an converges.

• If
0 ≤ dn ≤ an

(need 0 ≤ dn part here)
when n ≥ 17 and

∑
dn diverges , then

∑
an diverges.

Hint: sing the song to yourself.

0.11. State the Limit Comparison Test for a positive-termed series
∑
an.

Let bn > 0 and L = limn→∞
an
bn

.

• If 0 < L <∞ , then [
∑
bn converges ⇐⇒

∑
an converges ]

• If L = 0 , then [
∑
bn converges =⇒

∑
an converges ] .

• If L =∞ , then [
∑
bn diverges =⇒

∑
an diverges ] .

Goal: cleverly pick positive bn’s so that you know what
∑

bn does (converges or diverges) and the sequence
{

an
bn

}
n
converges.

0.12. Helpful Intuition Fill in the 3 boxes using: ex, ln x, xq. Use each once, and only once.

Consider a positive power q > 0. There is (some big number) Nq > 0 so that if x ≥ Nq then

lnx ≤ xq ≤ ex .
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Tests for Arbitrary-Termed Series
(so for

∑
an where −∞ < an <∞)

0.13. By definition, for an arbitrary series
∑
an, (fill in these 3 boxes with convergent or divergent).

•
∑
an is absolutely convergent if and only if

∑
|an| is convergent .

•
∑
an is conditionally convergent if and only if∑

an is convergent and
∑
|an| is divergent .

•
∑
an is divergent if and only if

∑
an is divergent.

0.14. State the Ratio and Root Tests for arbitrary-termed series
∑
an with −∞ < an <∞. Let

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ or ρ = lim
n→∞

|an|
1
n .

• If ρ < 1 then
∑
an converges absolutely.

• If ρ > 1 then
∑
an diverges.

• If ρ = 1 then the test is inconclusive.

0.15. State the Alternating Series Test (AST) & Alternating Series Estimation Theorem.

Let

(1) un ≥ 0 for each n ∈ N

(2) limn→∞ un = 0

(3) un > (also ok ≥) un+1 for each n ∈ N.

Then

• the series
∑

(−1)nun converges. (also ok:
∑

(−1)n+1un converges or
∑

(−1)n−1un converges)

• and we can estimate (i.e., approximate) the infinite sum
∑∞

n=1(−1)nun by the finite sum∑N
k=1(−1)kuk and the error (i.e. remainder) satisfies∣∣∣∣∣

∞∑
k=1

(−1)kuk −
N∑
k=1

(−1)kuk

∣∣∣∣∣ ≤ uN+1 .
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