0. Fill-in-the boxes. All series \sum are understood to be $\sum_{n=1}^{\infty}$, unless otherwise indicated.

Sequences

0.1. Practice taking basic limits of sequences. (Important, e.g., for Ratio and Root Tests.) Can you do similar problems?

$$\bullet \lim_{n \to \infty} \frac{5n^{17} + 6n^2 + 1}{7n^{18} + 9n^3 + 5} =$$

$$\bullet \lim_{n \to \infty} \sqrt{\frac{36n^{17} - 6n^2 - 1}{4n^{17} + 9n^3 + 5}} = \boxed{}$$

$$\bullet \lim_{n \to \infty} \frac{-5n^{18} + 6n^2 + 1}{7n^{17} + 9n^3 + 5} = \boxed{}$$

$$\bullet \lim_{n \to \infty} n^{\frac{1}{n}} =$$

0.2. Geometric Sequence. Fill in the boxes with with the proper range of $r \in \mathbb{R}$. (Needed for Geometric Series!)

• $\lim_{n\to\infty} r^n = 0$ if and only if r satisfies

• $\lim_{n\to\infty} r^n = 1$ if and only if r satisfies

• the sequence $\{r^n\}_{n=1}^{\infty}$ diverges to ∞ if and only if r satisfies

• the sequence $\{r^n\}_{n=1}^{\infty}$ diverges but does not diverge to ∞ if and only if r satisfies

0.3. Commonly Occurring Limits of Sequences. Here, $c \in \mathbb{R}$ is a constant. \langle Thomas Book §10.1, Theorem 5

 $(1) \lim_{n \to \infty} \frac{\ln n}{n} = \boxed{}$

$$(2) \lim_{n \to \infty} \sqrt[n]{n} =$$

 $(3) \lim_{n \to \infty} c^{1/n} = \boxed{ (c > 0)}$

$$(4) \lim_{n \to \infty} c^n = \boxed{ (|c| < 1)}$$

 $(5) \lim_{n \to \infty} \left(1 + \frac{c}{n} \right)^n = \boxed{ (c \in \mathbb{R})}$

(6) $\lim_{n \to \infty} \frac{x^n}{n!} = \boxed{ (c \in \mathbb{R})}$

Series

For a formal series $\sum_{n=1}^{\infty} a_n$, where each $a_n \in \mathbb{R}$, consider the corresponding sequence $\{s_n\}_{n=1}^{\infty}$ of									
partial sums, so $s_n = \sum_{k=1}^n a_k$. Then the formal series $\sum a_n$:									
• converges if and only if									
$ullet$ converges to $L \in \mathbb{R}$ if and only if									
• diverges if and only if									
Now assume, furthermore, that $a_n \geq 0$ for each n . Then the sequence $\{s_n\}_{n=1}^{\infty}$ of partial sums									
$\underbrace{ ext{either}}$									
• <u>is</u> bounded above (by some finite number), in which case the <u>series</u> $\sum a_n$									
$ \circ_{\!$									
• is not bounded above (by some finite number), in which case the series $\sum a_n$									
Fix $r \in \mathbb{R}$ with $r \neq 1$. For $N \geq 50$, let $s_N = \sum_{n=50}^{N} r^n$. (Note the sum starts at 50.) For each $N \geq 50$,									
the partial sums s_N can be written as: (your answer should NOT contain a "" nor a " \sum " sign)									
$s_N = $.									
Geometric Series. Fill in the boxes with the proper range of $r \in \mathbb{R}$.									
• The series $\sum r^n$ converges if and only if r satisfies \square .									

0.8. *p*-series. Fill in the boxes with the proper range of $p \in \mathbb{R}$.

0.7. State the n^{th} -term test for an arbitrary series $\sum a_n$.

• The series $\sum \frac{1}{n^p}$ converges if and only if

Tests for Positive-Termed Series
(so for $\sum a_n$ where $a_n \geq 0$)

0.9.	State the	Integral	Test	with	Remainder	Estimate for	rai	positive-termed	series	$\sum a_n$.
	~ cccc c crrc						_ ~	0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0	NOT TON	/ / 0011.

Let $f: [1, \infty) \to \mathbb{R}$ be so that

- (1) $a_n = f(n)$ for each $n \in \mathbb{N}$
- (2) f is a function
- (3) f is a function
- (4) f is a function.

Then

- $\sum a_n$ converges if and only if converges.
- and if $\sum a_n$ converges, then

$$0 \le \left(\sum_{k=1}^{\infty} a_k\right) - \left(\sum_{k=1}^{N} a_k\right) \le$$

- **0.10.** State the **Direct Comparison Test** for a <u>positive</u>-termed series $\sum a_n$.
 - If when $n \ge 17$ and , then $\sum a_n$ converges.
 - If when $n \ge 17$ and , then $\sum a_n$ diverges.

Hint: sing the song to yourself.

0.11. State the **Limit Comparison Test** for a <u>positive</u>-termed series $\sum a_n$.

Let $b_n > 0$ and $L = \lim_{n \to \infty} \frac{a_n}{b_n}$.

- If $0 < L < \infty$, then
- If L=0, then
- If $L = \infty$, then

Goal: cleverly pick positive b_n 's so that you know what $\sum b_n$ does (converges or diverges) and the sequence $\left\{\frac{a_n}{b_n}\right\}_n$ converges.

0.12. Helpful Intuition Fill in the 3 boxes using: e^x , $\ln x$, x^q . Use each once, and only once.

Consider a positive power q > 0. There is (some big number) $N_q > 0$ so that if $x \ge N_q$ then

$$\leq$$
 \leq $.$

Tests for Arbitrary-Termed Series (so for $\sum a_n$ where $-\infty < a_n < \infty$)

0.13. By definition, for an arbitrary series $\sum a_n$, (fill in these 3 boxes with convergent or divergent).

- $\sum a_n$ is absolutely convergent if and only if $\sum |a_n|$ is
- $\sum a_n$ is <u>conditionally convergent</u> if and only if

 $\sum a_n$ is and $\sum |a_n|$ is

• $\sum a_n$ is divergent if and only if $\sum a_n$ is divergent.

0.14. State the Ratio and Root Tests for arbitrary-termed series $\sum a_n$ with $-\infty < a_n < \infty$. Let

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \quad \text{or} \quad \rho = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}.$$

- If $\sum a_n$ converges absolutely.
- If then $\sum a_n$ diverges.
- If then the test is inconclusive.

0.15. State the Alternating Series Test (AST) & Alternating Series Estimation Theorem.

Let

- (1) $u_n \ge 0$ for each $n \in \mathbb{N}$
- $(2) \lim_{n\to\infty} u_n = \boxed{}$
- (3) u_n u_{n+1} for each $n \in \mathbb{N}$.

Then

- •
- and we can estimate (i.e., approximate) the infinite sum $\sum_{n=1}^{\infty} (-1)^n u_n$ by the finite sum $\sum_{k=1}^{N} (-1)^k u_k$ and the error (i.e. remainder) satisfies

$$\left| \sum_{k=1}^{\infty} (-1)^k u_k - \sum_{k=1}^{N} (-1)^k u_k \right| \le \boxed{}.$$