
Operations on Power Series §10.7 Power Series

•. A power series (p.s.),
:::::::::
centered about x0 ∈ R and with

:::::::::::
coefficients cn ∈ R, is a series of the form,

∞∑
n=0

cn (x− x0)n
note
= c0 + c1 (x− x0) + c2 (x− x0)2 + c3 (x− x0)3 + . . . . (PS)

•. If we evaluate a
::::::
power series (§10.7-10.10) at a (fixed) x, then we get a

::::::::::
numerical series (§10-2-10.6).

•. A power series converges (abs.) at it’s center. since
∑∞

n=0 cn (x− x0)n
∣∣
x=x0

= c0 +01 +02 + . . . = c0.

Thm. A power series centered at x0 has a radius of convergence R ∈ [0,∞] satisfying

∞∑
n=0

cn (x− x0)n


is absolutely convergent when |x− x0| < R

can do anything when |x− x0| = R, i.e. x = x0 ±R, the endpts

divergent when |x− x0| > R.

Draw a picture

•. The interval of convergence of a p.s. is the set of x’s for which the p.s. conv. (absolutely or conditionally).

•. To find the radius of convergence R, we often use the Ratio or Root Test.

•.
∑∞

n=0 cn (x− x0)n is a power series repesentation of a function y = h (x) about x0 (valid in some

interval I) provided

h (x) = lim
N→∞

N∑
n=0

cn (x− x0)n for each x ∈ I .

•. Important Example. The geometric series
∑
xn

note
=
∑

1 (x− 0)n is absolutely convergent when

|x| < 1 and is divergent when |x| ≥ 1. So
∑
xn has radius of convergence 1. When |x| < 1, we

know
∑∞

n=0 x
n = 1

1−x and so h (x) = 1
1−x has a power series representation

1

1− x
=

∞∑
n=0

xn valid when x ∈ (−1, 1) . (GS)

Setting for rest of the handout.

We find power representations for two (given) functions y = f (x) and y = g (x).

f(x)
(∗f )
:=

∞∑
n=0

an(x− x0)n valid for x ∈ (x0 −Rf , x0 +Rf )

g(x)
(∗g)
:=

∞∑
n=0

bn(x− x0)n valid for x ∈ (x0 −Rg , x0 +Rg) ,

where

0 < Rf := the radius of convergence of the power series representation
∑

an (x− x0)n of f

0 < Rg := the radius of convergence of the power series representation
∑

bn (x− x0)n of g .
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Operations on Power Series §10.7 Power Series

The equality signs mark as
♥
= denotes that this equality is where the heart of the theorem lies.

Algebraic Operations on Power Series

I. Evaluate a
::::::
power series at a constant (e.g., plugging in 17 for x) and you get a

:::::::::
numerical series.

So the Algebraic Operations that hold for
::::::::::
numerical series also hold for

::::::
power series. So we get Thm1&2:

Theorem 1. For a constant c ∈ R and m ∈ N, we can obtain power series representations for the

functions: y = cf (x) and h (x) = (x− x0)m f (x).

cf (x)
i.e.
= c

[
∞∑
n=0

an (x− x0)n
]

♥
=

∞∑
n=0

c an (x− x0)n

(x− x0)m f (x)
i.e.
= (x− x0)m

[
∞∑
n=0

an (x− x0)n
]
♥
=

∞∑
n=0

an (x− x0)m (x− x0)n
A©
=

∞∑
n=0

an (x− x0)m+n

which are valid for x ∈ (x0 −Rf , x0 +Rf ).

Theorem 2. We can obtain power series representations for the functions f ± g.

f (x) + g (x)
i.e.
=

[
∞∑
n=0

an (x− x0)n
]

+

[
∞∑
n=0

bn (x− x0)n
]
♥
=

∞∑
n=0

(an + bn) (x− x0)n

f (x)− g (x)
i.e.
=

[
∞∑
n=0

an (x− x0)n
]
−

[
∞∑
n=0

bn (x− x0)n
]
♥
=

∞∑
n=0

(an − bn) (x− x0)n

which are valid for x ∈ (x0 −Rf , x0 +Rf ) ∩ (x0 −Rg , x0 +Rg).

Calculus Operations on Power Series

Theorem 3. We can obtain a power series representation for y = f ′ (x).

f ′(x)
i.e.
= Dx

 ∞∑
n=0

an(x− x0)n

 ♥
=

∞∑
n=1

Dx(an(x− x0)n)
c©
=

∞∑
n=1

nan(x− x0)n−1 (3)

which is valid for x ∈ (x0 −Rf , x0 +Rf ).

Also, the radius of convergence of each power series in (3) is Rf .

Theorem 4. We can also obtain a power series representation for the integral.∫
f(x) dx

i.e.
=

∫ [ ∞∑
n=0

an(x− x0)n
]
dx

♥
=

∞∑
n=0

[∫
an(x− x0)n dx

]
c©
= C +

∞∑
n=0

an
n+ 1

(x− x0)n+1

(4)

and so if α and β are in (x0 −Rf , x0 +Rf ), then∫ x=β

x=α

f(x) dx
(4)
=

[
∞∑
n=0

an
n+ 1

(β − x0)n+1

]
−

[
∞∑
n=0

an
n+ 1

(α− x0)n+1

]
Thm 2

=
∞∑
n=0

an
n+ 1

[
(β − x0)n+1 − (α− x0)n+1

]
.

Also, the radius of convergence of each power series in (4) is Rf .

Warning: we exclude the endpoints x = x0 ±Rf since (3) and (4) sometimes don’t holds at these endpoints.
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