-. A power series (p.s.), centered about $x_{0} \in \mathbb{R}$ and with coefficients $c_{n} \in \mathbb{R}$, is a series of the form,

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n} \stackrel{\text { note }}{=} c_{0}+c_{1}\left(x-x_{0}\right)+c_{2}\left(x-x_{0}\right)^{2}+c_{3}\left(x-x_{0}\right)^{3}+\ldots \tag{PS}
\end{equation*}
$$

-. If we evaluate a power series (§10.7-10.10) at a (fixed) x, then we get a numerical series (§10-2-10.6).

- A power series converges (abs.) at it's center. since $\left.\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}\right|_{x=x_{0}}=c_{0}+0^{1}+0^{2}+\ldots=c_{0}$.

Thm. A power series centered at x_{0} has a radius of convergence $R \in[0, \infty]$ satisfying

$$
\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n} \begin{cases}\text { is absolutely convergent } & \text { when }\left|x-x_{0}\right|<R \\ \text { can do anything } & \text { when }\left|x-x_{0}\right|=R, \text { i.e. } x=x_{0} \pm R, \text { the endpts } \\ \text { divergent } & \text { when }\left|x-x_{0}\right|>R .\end{cases}
$$

Draw a picture

-. The interval of convergence of a p.s. is the set of x 's for which the p.s. conv. (absolutely or conditionally).

- To find the radius of convergence R, we often use the Ratio or Root Test.
-. $\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}$ is a power series repesentation of a function $y=h(x)$ about x_{0} (valid in some interval I) provided

$$
h(x)=\lim _{N \rightarrow \infty} \sum_{n=0}^{N} c_{n}\left(x-x_{0}\right)^{n} \quad \text { for each } x \in I
$$

-. Important Example. The geometric series $\sum x^{n} \stackrel{\text { note }}{=} \sum 1(x-0)^{n}$ is absolutely convergent when $|x|<1$ and is divergent when $|x| \geq 1$. So $\sum x^{n}$ has radius of convergence 1 . When $|x|<1$, we know $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$ and so $h(x)=\frac{1}{1-x}$ has a power series representation

$$
\begin{equation*}
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad \text { valid when } \quad x \in(-1,1) \tag{GS}
\end{equation*}
$$

Setting for rest of the handout.
We find power representations for two (given) functions $y=f(x)$ and $y=g(x)$.

$$
\begin{aligned}
& f(x) \stackrel{\left(*_{f}\right)}{=} \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \text { valid for } x \in\left(x_{0}-R_{f}, x_{0}+R_{f}\right) \\
& g(x) \stackrel{\left(*_{g}\right)}{=} \sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n} \quad \text { valid for } x \in\left(x_{0}-R_{g}, x_{0}+R_{g}\right)
\end{aligned}
$$

where
$0<R_{f}:=$ the radius of convergence of the power series representation $\sum a_{n}\left(x-x_{0}\right)^{n}$ of f
$0<R_{g}:=$ the radius of convergence of the power series representation $\sum b_{n}\left(x-x_{0}\right)^{n}$ of g.

The equality signs mark as $\stackrel{\ominus}{=}$ denotes that this equality is where the heart of the theorem lies.

Algebraic Operations on Power Series

-. Evaluate a power series at a constant (e.g., plugging in 17 for x) and you get a numerical series.
So the Algebraic Operations that hold for numerical series also hold for power series. So we get Thm1\&2:
Theorem 1. For a constant $c \in \mathbb{R}$ and $m \in \mathbb{N}$, we can obtain power series representations for the functions: $y=c f(x)$ and $h(x)=\left(x-x_{0}\right)^{m} f(x)$.

$$
\begin{aligned}
& c f(x) \stackrel{\text { i.e. }}{=} c\left[\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}\right] \stackrel{\varrho}{=} \sum_{n=0}^{\infty} c a_{n}\left(x-x_{0}\right)^{n} \\
&\left(x-x_{0}\right)^{m} f(x) \stackrel{\text { i.e. }}{=}\left(x-x_{0}\right)^{m}\left[\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}\right] \stackrel{\varrho}{=} \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{m}\left(x-x_{0}\right)^{n} \stackrel{(A)}{=} \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{m+n}
\end{aligned}
$$

which are valid for $x \in\left(x_{0}-R_{f}, x_{0}+R_{f}\right)$.
Theorem 2. We can obtain power series representations for the functions $f \pm g$.

$$
\begin{aligned}
& f(x)+g(x) \stackrel{\text { i.e. }}{=}\left[\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}\right]+\left[\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}\right] \stackrel{\varrho}{=} \sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right)\left(x-x_{0}\right)^{n} \\
& f(x)-g(x) \stackrel{\text { i.e. }}{=}\left[\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}\right]-\left[\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}\right] \stackrel{\varrho}{=} \sum_{n=0}^{\infty}\left(a_{n}-b_{n}\right)\left(x-x_{0}\right)^{n}
\end{aligned}
$$

which are valid for $x \in\left(x_{0}-R_{f}, x_{0}+R_{f}\right) \cap\left(x_{0}-R_{g}, x_{0}+R_{g}\right)$.

Calculus Operations on Power Series

Theorem 3. We can obtain a power series representation for $y=f^{\prime}(x)$.

$$
\begin{equation*}
f^{\prime}(x) \stackrel{\text { i.e. }}{=} D_{x}\left[\sum_{n=\underline{\underline{0}}}^{\infty} a_{n}\left(x-x_{0}\right)^{n}\right] \stackrel{\varrho}{=} \sum_{n=\underline{\underline{1}}}^{\infty} D_{x}\left(a_{n}\left(x-x_{0}\right)^{n}\right) \stackrel{\complement}{=} \sum_{n=\underline{\underline{1}}}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1} \tag{3}
\end{equation*}
$$

which is valid for $x \in\left(x_{0}-R_{f}, x_{0}+R_{f}\right)$.
Also, the radius of convergence of each power series in (3) is R_{f}.
Theorem 4. We can also obtain a power series representation for the integral.

$$
\begin{align*}
\int f(x) d x & \stackrel{\text { i.e. }}{=} \int\left[\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}\right] d x \stackrel{\varrho}{=} \sum_{n=0}^{\infty}\left[\int a_{n}\left(x-x_{0}\right)^{n} d x\right] \tag{4}\\
& \varrho\left(\sum_{n=0}^{=} \frac{a_{n}}{n+1}\left(x-x_{0}\right)^{n+1}\right.
\end{align*}
$$

and so if α and β are in $\left(x_{0}-R_{f}, x_{0}+R_{f}\right)$, then

$$
\begin{aligned}
\int_{x=\alpha}^{x=\beta} f(x) d x & \stackrel{(4)}{=}\left[\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}\left(\beta-x_{0}\right)^{n+1}\right]-\left[\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}\left(\alpha-x_{0}\right)^{n+1}\right] \\
& \stackrel{\text { Thm }}{=}{ }^{2} \sum_{n=0}^{\infty} \frac{a_{n}}{n+1}\left[\left(\beta-x_{0}\right)^{n+1}-\left(\alpha-x_{0}\right)^{n+1}\right]
\end{aligned}
$$

Also, the radius of convergence of each power series in (4) is R_{f}.
Warning: we exclude the endpoints $x=x_{0} \pm R_{f}$ since (3) and (4) sometimes don't holds at these endpoints.

