For 1-3: do not use a calculator on these problems. Your answers should be numbers. However, you do not have to perform grade school level arithmetic. E.g., something as below is acceptable:

$$\frac{3}{10} \left[\frac{13}{17} + (2)\sqrt{\frac{14}{15}} + \sqrt{\frac{16}{17}} \right] \qquad \text{or} \qquad \frac{(17)(18)}{(19)(20)(21)(22)}$$

You may use a calculator for 4.

Let

$$f(x) = x^2 + 1$$
 and $[a, b] = [-1, 1]$ and $n = 4$.

1. Find the Trapezidal Rule approximation T_n of $\int_a^b f(x) dx$ with *n* steps.

ANSWER: $T_n =$

Table for $n = 3$. $\Delta x =$			
i	x_i	weight	$f\left(x_{i} ight)$
0			
1			
2			
3			
4			

2. Find a good upper bound for $\max_{a \le x \le b} |f''(x)|$.

ANSWER: $\max_{a \le x \le b} |f''(x)| \le$

3. The Trapezoidal Rule Error Theorem gives that $\left|T_n - \int_a^b f(x) dx\right| \leq$

.

4. Find the smallest integer *n* so that the Trapezoidal Rule Error Estimate (TREE) guarantees that $\left|T_n - \int_a^b f(x) dx\right| \leq 10^{-4}$. ANSWER: n =.

<u>Recall</u>: $1E^{-4} = 10^{-4} = \frac{1}{(10)^4} = \frac{1}{10000} = 0.0001$