For 1-3: do not use a calculator on these problems. Your answers should be numbers. However, you do not have to perform grade school level arithmetic. E.g., something as below is acceptable:

$$
\frac{3}{10}\left[\frac{13}{17}+(2) \sqrt{\frac{14}{15}}+\sqrt{\frac{16}{17}}\right] \quad \text { or } \quad \frac{(17)(18)}{(19)(20)(21)(22)}
$$

You may use a calculator for 4.

Let

$$
f(x)=x^{2}+1 \quad \text { and } \quad[a, b]=[-1,1] \quad \text { and } \quad n=4
$$

1. Find the Trapezidal Rule approximation T_{n} of $\int_{a}^{b} f(x) d x$ with n steps.

2. Find a good upper bound for $\max _{a \leq x \leq b}\left|f^{\prime \prime}(x)\right|$.

ANSWER: $\max _{a \leq x \leq b}\left|f^{\prime \prime}(x)\right| \leq$
3. The Trapezoidal Rule Error Theorem gives that $\left|T_{n}-\int_{a}^{b} f(x) d x\right| \leq$

4. Find the smallest integer n so that the Trapezoidal Rule Error Estimate (TREE) guarantees that $\left|T_{n}-\int_{a}^{b} f(x) d x\right| \leq 10^{-4}$. ANSWER: $n=\square$.

Recall: $1 \mathrm{E}^{-4}=10^{-4}=\frac{1}{(10)^{4}}=\frac{1}{10000}=0.0001$

