Throughout this handout, we are dealing with a function $f: [a, b] \to \mathbb{R}$. In recent sections, often our goal was to find the antiderivative F of f, i.e. to find a function $F: [a, b] \to \mathbb{R}$ such that

$$\int f(x) \, dx = F(x) + C \; .$$

Now goal is to find the <u>number</u>

$$\int_{a}^{b} f(x) \, dx \; .$$

If we can find the antiderivative F, then we know (FTC) that

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} F'(x) \, dx = F(b) - F(a) \; .$$

The trouble is that sometimes F is hard to find ... so we cope ... and numerically approximate $\int_a^b f(x) dx$, i.e., we look for some number $L \in R$ so that

$$\int_{a}^{b} f(x) dx \approx L \,.$$

We learned (§5.1,5.2) how to numerically approximate $\int_a^b f(x) dx$ using Riemann Sums/Rectangles. Now we are going to learn the <u>Trapezoidal (Trap.) Rule</u>, which uses trapezoids instead of rectangles. To use the Trap. Rule, start off just as you would when forming Riemann Rectangles.

• Divide [a, b] into n subintervals $[x_{i-1}, x_i]$, each of length

$$\Delta x = \frac{b-a}{n}$$

• So we get

$$x_i = a + i \left(\Delta x \right)$$

for $i = 0, 1, 2, \dots, n$.

<u>Trapazidal Rule approximation T_n of $\int_a^b f(x) dx$ with *n*-steps is</u>

$$T_n = \frac{\Delta x}{2} \left[1 \cdot f(x_0) + \left(2 \cdot \sum_{i=1}^{n-1} f(x_i) \right) + 1 \cdot f(x_n) \right] .$$

The terminology *n*-step refers to the fact that we are dividing the interval [a, b] into *n* subintervals (of equal length). <u>Question</u>. $\int_{a}^{b} f(x) dx \approx T_{n}$ but how good is this approximatation \approx ? <u>Answer</u>. The Trapezoidal Rule Error Theorem tells us!

<u>The useful fact/theorem</u>. Let f'' be continuous on [a, b]. Then there exists $c \in [a, b]$ so that

$$\left|T_n - \int_a^b f(x) \, dx\right| = \left(\frac{(b-a)^3}{12n^2}\right) \cdot \left[|f''(c)| \right].$$

Unfortunately, we do not know where in the interval [a, b] the point c is but at least we can say:

Trapezoidal Rule Error Estimate (TREE)

Let f'' be continuous on [a, b]. Then

$$\left|T_n - \int_a^b f(x) \, dx\right| \leq \left(\frac{(b-a)^3}{12n^2}\right) \cdot \left[\max_{a \leq x \leq b} |f''(x)|\right] \tag{TREE}$$

where $\left[\max_{a \le x \le b} |f''(x)|\right]$ is the maximum value (of y) the function y = |f''(x)| can be when $x \in [a, b]$.

Do not use a calculator on Problems 1-4. Your answers should be numbers. However, you do not have to perform grade school level arithmetic. E.g., either expression below would be acceptable.

$$\frac{3}{10} \left[\frac{13}{17} + (2)\sqrt{\frac{14}{15}} + \sqrt{\frac{16}{17}} \right] \qquad \text{or} \qquad \frac{(17)(18)}{(19)(20)(21)(22)} \ .$$

Let

$$f(x) = \sqrt{x}$$
 and $[a, b] = [4, 5]$

1. Find the Trapezidal Rule approximation T_3 of $\int_a^b f(x) dx$ with 3 steps.

ANS	WER: $T_3 =$			
Δx	; =		Table for T_3 .	
i	x_i	weight (1 or 2)	$f\left(x_{i} ight)$	
0				
1				
2				
3				

2. Find a good upper bound for $\max_{a \le x \le b} |f''(x)|$.

ANSWER: $\max_{a \le x \le b} |f''(x)| \le$

3. The Trapezoidal Rule Error Estimate gives that $\left|T_{3}-\int_{a}^{b}f\left(x\right)\,dx\right|\leq$

4. Now take an arbitrary integer $n \in \mathbb{N}$. Consider the Trap. rule approximation T_n of $\int_a^b f(x) dx$ with n steps.

The Trapezoidal Rule Error Estimate gives that $\left|T_n - \int_a^b f(x) dx\right| \leq$

5. Find the smallest integer $n \in \mathbb{N}$ so that the Trapezoidal Rule Error Estimate guarantees that $\left|T_n - \int_a^b f(x) dx\right| \leq 10^{-4}$. ANSWER: The integer n =.

<u>Recall</u>: $1E^{-4} = 10^{-4} = \frac{1}{(10)^4} = \frac{1}{10000} = 0.0001$

.

.