TODAY'S GOAL THE p-SERIES

Determine the behavior of the <u>*p*-series</u> $\sum_{n=1}^{\infty} \frac{1}{n^p}$. We will show that

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \quad \text{is} \quad \begin{cases} \text{convergent} & \text{if } p > 1 \\ \text{divergent to } +\infty & \text{if } p \le 1 \end{cases}.$$

When p = 1, the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n}$ is also called the harmonic series.

Note that the p-series looks like

$$p\text{-series}: \qquad \sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots \\ = 1 + \left(\frac{1}{2}\right)^p + \left(\frac{1}{3}\right)^p + \left(\frac{1}{4}\right)^p + \dots .$$

Warning: do not confuse a *p*-series $\sum_{n} \frac{1}{n^p}$ with a geometric series $\sum_{n} r^n$;

geometric series :
$$\sum_{n=1}^{\infty} r^n = r^1 + r^2 + r^3 + r^4 + \dots$$

RECALL

Recall that in the section on Improper Integrals, we showed that

$$\int_{x=1}^{x=\infty} \frac{1}{x^p} dx \quad \text{is} \quad \begin{cases} \text{convergent to } \frac{1}{p-1} & \text{if } p > 1 \\ \text{divergent to } +\infty & \text{if } p \le 1 \end{cases}.$$

INTEGRAL TEST

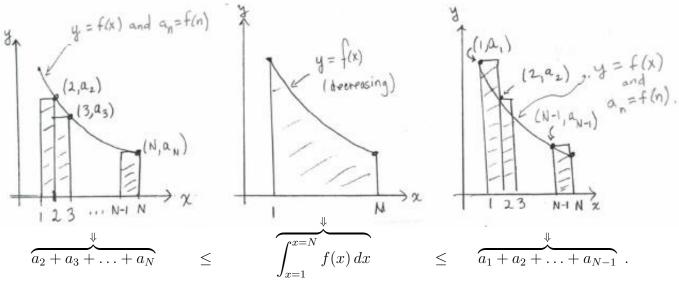
Let's say we are given a series $\sum a_n$ and we can find a function $f: [\underline{1}, \infty) \to \mathbb{R}$ satisfying

(1) $a_n = f(n)$ for each $n \in \mathbb{N}$ with $n \ge \underline{1}$ (this is usually accomplished by design) (2) y = f(x) is positive on $[\underline{1}, \infty)$ (so $\sum a_n$ needs to be a positive term series) (3) y = f(x) is continuous on $[\underline{1}, \infty)$ (can confirm this by showing $f'(x) \le 0$). (4) y = f(x) is decreasing on $[\underline{1}, \infty)$ (can confirm this by showing $f'(x) \le 0$). Then the series $\sum_{n=1}^{\infty} a_n$ and the improper integral $\int_{x=\underline{1}}^{x=\infty} f(x) dx$ either: (a) both converge (to finite numbers, although most likely different numbers) (b) both diverge (to ∞).

WHY THE INTEGRAL TEST IS TRUE

Let's say we are given a series $\sum a_n$ and find a function $f: [1, \infty) \to \mathbb{R}$ satisfying (1)–(4). Then

the sequence $\{\sum_{k=1}^{n} a_k\}_{n \in \mathbb{N}}$ and the sequence $\{\int_{1}^{n} f(x) dx\}_{n \in \mathbb{N}}$ are both increasing sequences and so each sequence has the choice of



Now take the limit as $N \to \infty$ to see that

$$\sum_{k=2}^{\infty} a_k \qquad \stackrel{(A)}{\leq} \qquad \int_{x=1}^{x=\infty} f(x) \, dx \qquad \stackrel{(B)}{\leq} \qquad \sum_{k=1}^{\infty} a_k \; . \tag{*}_1$$

The integral test now follows from $(*_1)$.

What if we changed our interval $[1, \infty)$ to $[17, \infty)$? Then $(*_1)$ would become

$$\sum_{k=17+1}^{\infty} a_k \qquad \stackrel{(A_{17})}{\leq} \qquad \qquad \int_{x=17}^{x=\infty} f(x) \, dx \qquad \stackrel{(B_{17})}{\leq} \qquad \sum_{k=17}^{\infty} a_k \, . \tag{*}_{17}$$

Observation 1. The statement of the Integral Test remains true if we replace each $\underline{\underline{1}}$ with 17, or any other integer. This is useful if, e.g., you can get (1)–(3) to hold but only have y = f(x) decreasing on $[17, \infty)$.

Observation 2. . <u>The Integral Test Remainder Estimate</u>.

Let's say that we have shown that $\sum a_n$ converges by using the integral test with the function y = f(x), which satisfies that above conditions (1) - (4). Then we can approximate the infinite sum $S := \sum_{n=1}^{\infty} a_n$ by the <u>computable</u> finite sum $s_n := \sum_{k=1}^{n} a_k$. Indeed, define S, s_n , and R_n by

$$S := \sum_{n=1}^{\infty} a_n$$
 and $s_n := \sum_{k=1}^n a_k$ and $S = s_n + R_n$.

Then $S \approx s_n$ within an error of $|R_n|$ and we can bound R_n by

$$0 \stackrel{\text{by (2)}}{\leq} \int_{x=n+1}^{x=\infty} f(x) \, dx \stackrel{\text{by (B_{17})}}{\leq} \boxed{R_n \stackrel{\text{note}}{=} \sum_{k=1}^{\infty} a_k - \sum_{k=1}^n a_k \stackrel{\text{note}}{=} \sum_{k=n+1}^{\infty} a_k} \stackrel{\text{by (A_{17})}}{\leq} \int_{x=n}^{x=\infty} f(x) \, dx \, .$$

Prof. Girardi, 17.01.01