Determine the behavior of the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$. We will show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}} \quad \text { is } \quad\left\{\begin{array}{ll}
\text { convergent } & \text { if } p>1 \\
\text { divergent to }
\end{array}+\infty \quad \text { if } p \leq 1\right.
$$

When $p=1$, the p-series $\sum_{n=1}^{\infty} \frac{1}{n}$ is also called the harmonic series.
Note that the p-series looks like

$$
p \text {-series : } \quad \begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n^{p}} & =1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\ldots \\
& =1+\left(\frac{1}{2}\right)^{p}+\left(\frac{1}{3}\right)^{p}+\left(\frac{1}{4}\right)^{p}+\ldots .
\end{aligned}
$$

Warning: do not confuse a p-series $\sum_{n} \frac{1}{n^{p}}$ with a geometric seris $\sum_{n} r^{n}$;

$$
\text { geometric series : } \quad \sum_{n=1}^{\infty} r^{n}=r^{1}+r^{2}+r^{3}+r^{4}+\ldots .
$$

RECALL

Recall that in the section on Improper Integrals, we showed that

$$
\int_{x=1}^{x=\infty} \frac{1}{x^{p}} d x \quad \text { is } \quad \begin{cases}\text { convergent to } \frac{1}{p-1} & \text { if } p>1 \\ \text { divergent to }{ }^{+} \infty & \text { if } p \leq 1 .\end{cases}
$$

INTEGRAL TEST

Let's say we are given a series $\sum a_{n}$ and we can find a function $f:[\underline{\underline{1}}, \infty) \rightarrow \mathbb{R}$ satisfying
(1) $a_{n}=f(n)$
(2) $y=f(x)$ is positive
(3) $y=f(x)$ is continuous on $[\underline{\underline{1}}, \infty)$
(4) $y=f(x)$ is decreasing on $[\underline{\underline{1}}, \infty) \quad$ (can confirm this by showing $\left.f^{\prime}(x) \leq 0\right)$.

Then the series $\sum_{n=1}^{\infty} a_{n}$ and the improper integral $\int_{x=1}^{x=\infty} f(x) d x$ either:
(a) both converge (to finite numbers, although most likely different numbers)
(b) both diverge (to ∞).

WHY THE INTEGRAL TEST IS TRUE

Let's say we are given a series $\sum a_{n}$ and find a function $f:[1, \infty) \rightarrow \mathbb{R}$ satisfying (1)-(4). Then the sequence $\left\{\sum_{k=1}^{n} a_{k}\right\}_{n \in \mathbb{N}} \quad$ and \quad the sequence $\left\{\int_{1}^{n} f(x) d x\right\}_{n \in \mathbb{N}}$ are both increasing sequences and so each sequence has the choice of either [converging to some finite number] or [diverging to ∞].
Next compare the terms of these two sequences:

\leq

$$
\leq \quad \overbrace{a_{1}+a_{2}+\ldots+a_{N-1}}^{\Downarrow}
$$

Now take the limit as $N \rightarrow \infty$ to see that

$$
\begin{equation*}
\sum_{k=2}^{\infty} a_{k} \stackrel{(\mathrm{~A})}{\leq} \quad \int_{x=1}^{x=\infty} f(x) d x \quad \stackrel{(\mathrm{~B})}{\leq} \quad \sum_{k=1}^{\infty} a_{k} \tag{1}
\end{equation*}
$$

The integral test now follows from $\left(*_{1}\right)$.
What if we changed our interval $[1, \infty)$ to $[17, \infty)$? Then $\left(*_{1}\right)$ would become

$$
\begin{equation*}
\sum_{k=17+1}^{\infty} a_{k} \stackrel{\left(\mathrm{~A}_{17}\right)}{\leq} \quad \int_{x=17}^{x=\infty} f(x) d x \quad \stackrel{\left(\mathrm{~B}_{17}\right)}{\leq} \quad \sum_{k=17}^{\infty} a_{k} \tag{17}
\end{equation*}
$$

Observation 1. The statement of the Integral Test remains true if we replace each $\underline{\underline{1}}$ with 17 , or any other integer. This is useful if, e.g., you can get (1)-(3) to hold but only have $y=f(x)$ decreasing on $[17, \infty)$.

Observation 2. . The Integral Test Remainder Estimate.
Let's say that we have shown that $\sum a_{n}$ converges by using the integral test with the function $y=f(x)$, which satisfies that above conditions (1) - (4). Then we can approximate the infinite sum $S:=\sum_{n=1}^{\infty} a_{n}$ by the computable finite sum $s_{n}:=\sum_{k=1}^{n} a_{k}$. Indeed, define S, s_{n}, and R_{n} by

$$
S:=\sum_{n=1}^{\infty} a_{n} \quad \text { and } \quad s_{n}:=\sum_{k=1}^{n} a_{k} \quad \text { and } \quad S=s_{n}+R_{n} .
$$

Then $S \approx s_{n}$ within an error of $\left|R_{n}\right|$ and we can bound R_{n} by

