
§10.3 Integral Test

today’s goal
the p-series

Determine the behavior of the p-series
∑∞

n=1
1
np . We will show that

∞∑
n=1

1

np
is

{
convergent if p > 1

divergent to +∞ if p ≤ 1 .

When p = 1, the p-series
∑∞

n=1
1
n

is also called the harmonic series.

Note that the p-series looks like

p-series :
∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+

1

4p
+ . . .

= 1 +

(
1

2

)p

+

(
1

3

)p

+

(
1

4

)p

+ . . . .

Warning: do not confuse a p-series
∑

n
1
np with a geometric seris

∑
n r

n;

geometric series :
∞∑
n=1

rn = r1 + r2 + r3 + r4 + . . . .

recall

Recall that in the section on Improper Integrals, we showed that

∫ x=∞

x=1

1

xp
dx is

{
convergent to 1

p−1 if p > 1

divergent to +∞ if p ≤ 1 .

integral test

Let’s say we are given a series
∑

an and we can find a function f : [ 1 , ∞)→ R satisfying

(1) an = f(n) for each n ∈ N with n ≥ 1 (this is usually accomplished by design)

(2) y = f(x) is positive on [ 1 , ∞) (so
∑

an needs to be a positive term series)

(3) y = f(x) is continuous on [ 1 , ∞)

(4) y = f(x) is decreasing on [ 1 , ∞) (can confirm this by showing f ′(x) ≤ 0).

Then the series
∑∞

n=1 an and the improper integral
∫ x=∞
x=1 f(x) dx either:

(a) both converge (to finite numbers, although most likely different numbers)

(b) both diverge (to ∞) .
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§10.3 Integral Test

why the integral test is true

Let’s say we are given a series
∑

an and find a function f : [1 , ∞)→ R satisfying (1)–(4). Then

the sequence {
∑n

k=1 ak}n∈N and the sequence {
∫ n

1
f(x) dx}n∈N

are both increasing sequences and so
::::
each sequence has the choice of

either [converging to some finite number] or [diverging to ∞].

Next compare the terms of these two sequences:

⇓︷ ︸︸ ︷
a2 + a3 + . . . + aN ≤

⇓︷ ︸︸ ︷∫ x=N

x=1

f(x) dx ≤
⇓︷ ︸︸ ︷

a1 + a2 + . . . + aN−1 .

Now take the limit as N →∞ to see that
∞∑
k=2

ak
(A)

≤
∫ x=∞

x=1

f(x) dx
(B)

≤
∞∑
k=1

ak . (∗1)

The integral test now follows from (∗1).

What if we changed our interval [1,∞) to [17,∞)? Then (∗1) would become
∞∑

k=17+1

ak
(A17)

≤
∫ x=∞

x=17

f(x) dx
(B17)

≤
∞∑

k=17

ak . (∗17)

Observation 1. The statement of the Integral Test remains true if we replace each 1 with 17,

or any other integer. This is useful if, e.g., you can get (1)–(3) to hold but only have y = f(x)

decreasing on [17,∞).

Observation 2. . The Integral Test Remainder Estimate.

Let’s say that we have shown that
∑

an converges by using the integral test with the function

y = f(x), which satisfies that above conditions (1) - (4). Then we can approximate the infinite

sum S :=
∑∞

n=1 an by the computable finite sum sn :=
∑n

k=1 ak. Indeed, define S, sn, and Rn by

S :=
∞∑
n=1

an and sn :=
n∑

k=1

ak and S = sn + Rn .

Then S ≈ sn within an error of |Rn| and we can bound Rn by

0
by (2)

≤
∫ x=∞

x=n+1

f(x) dx
by (B17)

≤ Rn
note
=

∞∑
k=1

ak −
n∑

k=1

ak
note
=

∞∑
k=n+1

ak
by (A17)

≤
∫ x=∞

x=n

f(x) dx .
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