1. Complete the Unit Circle started below.
1.1. Fill in the boxes with the angle measurement in radians, between 0 and $2 \pi$, for each of the 16 angles which are measured in degrees.
1.2. Next to each of the 16 points drawn, indicate the $(x, y)$ coordinate of the point on the unit circle.


## Instructions For Remaining Trig. Problems 2-5:

First show all your work below the box then put answer in the box.
No credit will be given for an answer just put in a box without proper justification.
Work in a logical fashion, explaining how you arrived at your boxed answer.
2. Fill in the boxes. You might want to first review the range of the inverse trigonometry functions.
2.1. A reference triangle for $\tan \theta=\frac{\sqrt{3}}{1}$ is:


1
2.2. Express arctan $\sqrt{3}$ in radians. ANSWER: $\arctan \sqrt{3}=$ $\square$
2.3. Express arctan $(-\sqrt{3})$ in radians. ANSWER: $\arctan (-\sqrt{3})=\square$
3. Fill in the boxes or circle the correct answer.
3.0. A reference triangle for $\tan \theta=\frac{4}{3}$ is

3.1. Can $\theta$ be between 0 and $\frac{\pi}{2}$ ? ( $1^{\text {st }}$ quadrant) circle one: YES or NO Answer if (and only if) you circled YES. Then $\sin \theta=$ $\square$
3.2. $\quad$ Can $\theta$ be between $\frac{\pi}{2}$ and $\pi$ ? (2 ${ }^{\text {nd }}$ quadrant)
circle one: YES or NO
Answer if (and only if) you circled YES. Then $\sin \theta=$ $\square$
3.3. Can $\theta$ be between $\pi$ and $\frac{3 \pi}{2}$ ? ( $3^{\text {rd }}$ quadrant) circle one: YES or NO

Answer if (and only if) you circled YES. Then $\sin \theta=$ $\square$
3.4. Can $\theta$ be between $\frac{3 \pi}{2}$ and $2 \pi$ ? ( $4^{\text {th }}$ quadrant) circle one: YES or NO

Answer if (and only if) you circled YES. Then $\sin \theta=$ $\square$
4. Let $x=5 \sec \theta$ and $0<\theta<\frac{\pi}{2}$.

Without using inverse trigonometric functions, express $\tan \theta$ as a function of $x$.
ANSWER: $\tan \theta=\square$
5. Let $x=5 \sec \theta$ and $\frac{\pi}{2}<\theta<\pi$.

Without using inverse trigonometric functions, express $\tan \theta$ as a function of $x$.
$\square$

## Instructions For Remaining $u-d u$ Problems 6-11:

First show all your work below the box then put answer in the box.
No credit will be given for an answer just put in a box without proper justification.
Box your $u$ - du substitution. Work in a logical fashion.
How to pick $u$ for a $u-d u$ substitution? Loosely speaking, we often view an integral as

$$
\int f(x) d x=\int(\text { a function of } x)[(\text { another function of } x) d x]
$$

where the [ (another function of $x$ ) $d x$ ] is essentially (up to a constant) the $d u$. In $u-d u$ sub.'s, when picking the $u$, we do not worry about the constants since a constant just jumps over the integral sign and comes along for the ride. Then we adjust for that constant (by finding another constant $K$ ) and write

$$
\left.\int f(x) d x=K \int(\text { a function of } x) \quad \text { (still another function of } x\right) d x
$$

where the (still another function of $x) d x$ is exactly the $d u$.
$\square$
6. $\int \frac{\cos x d x}{\sqrt{1+\sin x}}=$ $+\mathrm{C}$
7. $\int \frac{d x}{x \ln x}=$ $+\mathrm{C}$
8. $\int x e^{-x^{2}} d x=$

Recall order of operations: $e^{-x^{2}}=e^{\left(-x^{2}\right)}$.
9. $\int \frac{d x}{\sqrt{9-4 x^{2}}}=\square+C$
10. $\int \frac{x d x}{\sqrt{9-4 x^{2}}}=\quad+\mathrm{C}$
11. Lastly, an definite integral (i.e., an integral with limits of integration).

The previous integrals were indefinite integral (i.e., an integrals without limits of integration).
$\int_{x=\pi / 6}^{x=\pi / 3} \quad \frac{\sin x}{\cos ^{2} x} d x=$

