Goal

You are given a <u>continuous</u>, <u>nonnegative</u> function

$$f: [a, \infty) \to [0, \infty)$$

and you want to determine whether $\int_{a}^{\infty} f(x) dx$ is convergent or divergent.

Key Idea

Since $f(x) \ge 0$, we know $\int_a^{\infty} f(x) dx$ must either converges (to a finite number) or diverges to ∞ . One way to determine this is to COMPARE f to a <u>continuous</u>, <u>nonnegative</u> function $g: [a, \infty) \to [0, \infty)$ where you KNOW whether $\int_a^{\infty} g(x) dx$ is convergent or divergent.

Direct Comparison Test (DCT)

1. If $0 \le f(x) \le g(x)$ for each $x \in [a, \infty)$ and $\int_0^\infty g(x) dx$ converges, then $\int_0^\infty f(x) dx$ converges. 2. If $0 \le g(x) \le f(x)$ for each $x \in [a, \infty)$ and $\int_0^\infty g(x) dx$ diverges, then $\int_0^\infty f(x) dx$ diverges.

The DCT holds (also serves as a way to remember the DCT) since

$$0 \le f \le g \qquad \Rightarrow \qquad 0 \le \int_{a}^{\infty} f(x) \, dx \le \int_{a}^{\infty} g(x) \, dx$$
$$0 \le g \le f \qquad \Rightarrow \qquad 0 \le \int_{a}^{\infty} g(x) \, dx \le \int_{a}^{\infty} f(x) \, dx$$

Sing the song:

 $\checkmark \checkmark$ Bound above by a convergent, below by a divergent. $\checkmark \checkmark$

Limit Comparison Test (LCT)

Let $\lim_{x\to\infty} \frac{f(x)}{g(x)} = L$ and $0 < L < \infty$. Then we now that for x sufficiently large (i.e. big enough)

$$\left(\frac{L}{2}\right) g\left(x\right) \leq f\left(x\right) \leq (2L) g\left(x\right) .$$

 So

$$\int_0^\infty f(x) \, dx \text{ converges} \qquad \Longleftrightarrow \qquad \int_0^\infty g(x) \, dx \text{ converges}$$

which is the same as saying

$$\int_{0}^{\infty} f(x) \, dx \text{ diverges} \qquad \Longleftrightarrow \qquad \int_{0}^{\infty} g(x) \, dx \text{ diverges}$$

i.e., $\int_{0}^{\infty} f(x) dx$ and $\int_{0}^{\infty} g(x) dx$ will "do the same thing."

1. Determine whether the following (improper) integral is convergent or divergent.

$$\int_{2}^{\infty} \frac{dx}{1+e^x}$$

<u>Comment</u>. The indefinite integral $\int \frac{dx}{1+e^x}$ is do-able but it takes some work (first do a substitution $u = e^x$ and then do partial fractions) to show that $\int \frac{dx}{1+e^x} = x - \ln(1+e^x) + C$. Let's try to reduce our work by using a comparison test.

Thinking Land. Let

$$f(x) = \frac{1}{1 + e^x}$$
 where $f: [2, \infty) \to [0, \infty)$.

We want to compare f to a continuous nonnegative $g: [2, \infty) \to [0, \infty)$, where we can EASILY figure out what $\int_2^\infty g(x) dx$ does. When x is big (think of as close to ∞)

$$\frac{1}{1+e^x} \approx \frac{1}{e^x}$$

and $\int \frac{1}{e^x} dx$ is alot easier to integrate than $\int \frac{1}{1+e^x} dx$. So we will try comparing f to

$$g(x) := \frac{1}{e^x}$$
 where $g: [2, \infty) \to [0, \infty)$

Compute

$$\int_{2}^{t} \frac{dx}{e^{x}} = \int_{2}^{t} e^{-x} dx = -e^{-x} |_{x=2}^{x=t} = \frac{1}{e^{x}} |_{x=1}^{x=2} = \frac{1}{e^{2}} - \frac{1}{e^{t}} \xrightarrow{t \to \infty} \frac{1}{e^{2}} - 0 = e^{-2}$$

So $\int_{2}^{\infty} \frac{dx}{e^{x}}$ converges (in fact, $\int_{2}^{\infty} \frac{dx}{e^{x}} = e^{-2}$). Direct Comparison Test. If $x \in [2, \infty)^{1}$, then

$$e^{x} \le 1 + e^{x}$$
 and so $f(x) = \frac{1}{1 + e^{x}} \le \frac{1}{e^{x}} = g(x)$. (1)

So by the direct comparison test (we just \bullet bound above by a convergent \bullet), $\int_2^{\infty} \frac{dx}{1+e^x}$ converges. Note that the direct comparison test (DCT) does not tell us what number $\int_2^{\infty} \frac{dx}{1+e^x}$ converges to; all the DCT tells us is that $\int_2^{\infty} \frac{dx}{1+e^x}$ converges to some number and that $\int_2^{\infty} \frac{dx}{1+e^x} \leq e^{-2}$. Limit Comparison Test.

Compute

$$L := \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{e^x}{1 + e^x} \stackrel{\infty}{\underset{\text{L'H}}{\cong}} \lim_{x \to \infty} \frac{e^x}{e^x} = \lim_{x \to \infty} 1 = 1 \; .$$

Since $\lim_{x\to\infty} \frac{f(x)}{g(x)}$ exists and is strictly between 0 & ∞ and furthermore $\int_2^{\infty} g(x) dx$ converges, the Limit Comparison Test (LCT) tells us that $\int_2^{\infty} f(x) dx$ converges. As with the DCT, the LCT does not tell us to what precise number $\int_2^{\infty} f(x) dx$ converges.

2. Determine whether the following (improper) integral is convergent or divergent.

$$\int_{2}^{\infty} \frac{dx}{-1 + e^x}$$

¹Recall $x \in [2, \infty)$ reads "x is an element of the set $[2, \infty)$ " and so $x \in [2, \infty)$ is just saying $x \ge 2$.