

Helpful Intuition

<u>Claim 1</u>: If x > 0, then

$$\ln x \le x^1 \le e^x \; .$$

To see this, consider the function $g(x) = e^x - x$. Then g(0) = 1 and $g'(x) = e^x > 0$ for x > 0. So g(x) > 0 for x > 0. Recall that the graph of $y = \ln x$ is the reflection of the graph of $y = e^x$ over the line y = x.

<u>Claim 2</u>: Consider a positive power q > 0. There is (some big number) $N_q > 0$ so that if $x \ge N_q$ then

$\ln x \le x^q \le e^x$

To see Claim 2, use L'Hôpital's rule to show that

$$\lim_{x \to \infty} \frac{\log_e x}{x^q} = 0 \qquad \text{and} \qquad \lim_{x \to \infty} \frac{x^q}{e^x} = 0. \qquad (*)$$

Recall that $\log_e x = \ln x$. Recall that for any base b > 0 with $b \neq 1$

$$\log_b x = \frac{\log_e x}{\log_e b}$$
 and $D_x \log_b x = \frac{1}{x \ln b}$ and $D_x b^x = b^x \ln b$

and $\lim_{x\to\infty} b^x = \infty$ if and only if b > 1. And so (*) holds if one replaces e with any base b > 1. <u>Claim 3</u>: Consider a positive power q > 0 along with a base b > 1. There is (some big #) $N_{q,b} > 0$ so that if $x \ge N_{q,b}$ then

$$\log_b x \le x^q \le b^x$$

<u>Moral</u>: To figure out what is happening to a series involving $\log_b n$ or b^n , keep in mind that as $n \to \infty$

- $\log_b n$ grows super slow compared to n^q
- b^n grows super fast compared to n^q

for any positive power q > 0 and base b > 1.