0. Fill-in-the boxes. All series \sum are understood to be $\sum_{n=1}^{\infty}$, unless otherwise indicated.

0a. Sequences Fill in the boxes with with the proper range of $r \in \mathbb{R}$. (Afterall, this is needed for Geometric Series!)

- $\lim _{n \rightarrow \infty} r^{n}=0$ if and only if r satisfies
- $\lim _{n \rightarrow \infty} r^{n}=1$ if and only if r satisfies

$\|r\|<1 \quad$ also ok: $-1<r<1$ or $r \in(-1,1)$			
$r=1$			
d only if r satisfies	$r>1 \quad$ als	ok: $r \in(1, \infty)$	
ot diverge to ∞ if and	if r satisfies	$r \leq-1$ also ok: r	, -1]

0b. Fix $r \in \mathbb{R}$ with $r \neq 1$. For $N \geq 1700$, let $s_{N}=\sum_{\mathbf{n}=1 \mathbf{1 0 0}}^{N} r^{n}$. Note the sum starts at 1700 . Then s_{N} can be written as:

$$
s_{N}=\quad \frac{r^{1700}-r^{N+1}}{1-r} .
$$

for all $N \geq 1700$. Your answer should NOT contain a ". . " nor a " \sum " sign.
0c. State the $n^{\text {th }}$-term test for an arbitrary series $\sum a_{n}$.
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ (which includes the case that $\lim _{n \rightarrow \infty} a_{n}$ does not exist), then $\sum a_{n}$ diverges .
0d. Geometric Series. Fill in the boxes with the proper range of $r \in \mathbb{R}$. (Hint: look at the previous questions.)

- The series $\sum r^{n}$ converges if and only if r satisfies
- The series $\sum r^{n}$ diverges if and only if r satisfies

$\|r\|<1$
$\|r\| \geq 1$

0e. p-series. Fill in the boxes with the proper range of $p \in \mathbb{R}$.

- The series $\sum \frac{1}{n^{p}}$ converges if and only if
- The series $\sum \frac{1}{n^{p}}$ diverges if and only if

$p>1$
$p \leq 1$

Tests for Positive-Termed Series

(so for $\sum a_{n}$ where $a_{n} \geq 0$)
0f. State the Integral Test for a positive-termed series $\sum a_{n}$.
Let $f:[1, \infty) \rightarrow \mathbb{R}$ be so that

- $a_{n}=f(\sqrt{n})$ for each $n \in \mathbb{N}$
- f is a positive \quad function
- f is a
- f is a \qquad continuous
function
function.
Then $\sum a_{n}$ converges if and only if

$$
\int_{x=1}^{x=\infty} f(x) d x \quad \text { converges. }
$$

0 g . State the Direct Comparison Test for a positive-termed series $\sum a_{n}$.
Let $N_{0} \in \mathbb{N}$.

- If	$0 \leq a_{n} \leq c_{n}$	when $n \geq N_{0}$ and	$\sum c_{n}$ converges	, then $\sum a_{n}$ converges.
- If	$0 \leq d_{n} \leq a_{n}$	when $n \geq N_{0}$ and	$\sum d_{n}$ diverges	, then $\sum a_{n}$ diverges.

Hint: sing the song to yourself.
0h. State the Limit Comparison Test for a positive-termed series $\sum a_{n}$.
Let $b_{n}>0$ and $L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$.

Goal: cleverly pick positive b_{n} 's so that you know what $\sum b_{n}$ does (converges or diverges) and the sequence $\left\{\frac{a_{n}}{b_{n}}\right\}_{n}$ converges.

Helpful Intuition

Claim 1: If $x>0$, then

$$
\ln x \leq x^{1} \leq e^{x}
$$

To see this, consider the function $g(x)=e^{x}-x$. Then $g(0)=1$ and $g^{\prime}(x)=e^{x}>0$ for $x>0$. So $g(x)>0$ for $x>0$. Recall that the graph of $y=\ln x$ is the reflection of the graph of $y=e^{x}$ over the line $y=x$.

Claim 2: Consider a positive power $q>0$. There is (some big number) $N_{q}>0$ so that if $x \geq N_{q}$ then

$$
\ln x \leq x^{q} \leq e^{x}
$$

To see Claim 2, use L'Hôpital's rule to show that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\log _{e} x}{x^{q}}=0 \quad \text { and } \quad \lim _{x \rightarrow \infty} \frac{x^{q}}{e^{x}}=0 \tag{*}
\end{equation*}
$$

Recall that $\log _{e} x=\ln x$. Recall that for any base $b>0$ with $b \neq 1$

$$
\log _{b} x=\frac{\log _{e} x}{\log _{e} b} \quad \text { and } \quad D_{x} \log _{b} x=\frac{1}{x \ln b} \quad \text { and } \quad D_{x} b^{x}=b^{x} \ln b
$$

and $\lim _{x \rightarrow \infty} b^{x}=\infty$ if and only if $b>1$. And so $(*)$ holds if one replaces e with any base $b>1$.
Claim 3: Consider a positive power $q>0$ along with a base $b>1$. There is (some big \#) $N_{q, b}>0$ so that if $x \geq N_{q, b}$ then

$$
\log _{b} x \leq x^{q} \leq b^{x}
$$

Moral: To figure out what is happening to a series involving $\log _{b} n$ or b^{n}, keep in mind that as $n \rightarrow \infty$

- $\log _{b} n$ grows super slow compared to n^{q}
- b^{n} grows super fast compared to n^{q}
for any positive power $q>0$ and base $b>1$.

