Example $5 . \quad r=2 \sin (\theta)$
 Find the Arc Length!

Note, letting θ range from 0 to 2π traces the curve (here it is a circle) TWICE.
We get the curve traced ONCE by letting θ range from 0 to π.
Next calculate:

$$
\frac{d r}{d \theta}:=\frac{d}{d \theta}(2 \sin (\theta))=2 \cos (\theta)
$$

Now for the Arc Length:

$$
\begin{aligned}
\text { Arc Length }= & \int_{\theta=\alpha}^{\theta=\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} \mathrm{~d} \theta \\
= & \int_{\theta=0}^{\theta=\pi} \sqrt{(2 \sin (\theta))^{2}+(2 \cos (\theta))^{2}} \mathrm{~d} \theta \\
= & \int_{\theta=0}^{\theta=\pi} \sqrt{4\left(\sin ^{2} \theta+\cos ^{2} \theta\right)} d \theta \\
= & \int_{\theta=0}^{\theta=\pi} \int_{\theta=0}^{\theta=\pi} \\
& \sqrt{4(1)} d \theta=\int_{\theta} 2 d \theta \\
= & \left.2 \theta\right|_{\theta=0} ^{\theta=\pi}=2(\pi-0)=\sqrt{2 \pi} .
\end{aligned}
$$

The arc length of a circle is just the circumference of the circle.
The circumference of a circle with radius r is $2 \pi r$.
Our circle $r=2 \sin \theta$ has radius 1 and so it's circumference is $2 \pi \cdot 1=2 \pi$.

Example 6. Express the arc length of $r=2+2 \sin \theta$ as an integral with respect to θ.

We trace the curve ONCE by letting θ range from 0 to 2π.

Arc Length $=\int_{\theta=\alpha}^{\theta=\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$

$$
=\int_{\theta=0}^{\theta=2 \pi} \sqrt{(2+2 \sin \theta)^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

next calculate: $\frac{d r}{d \theta}=\frac{d}{d \theta}(2+2 \sin \theta)=0+2 \cos \theta=2 \cos \theta$ and so we get

$$
=\int_{\int_{\theta=0}^{\theta=2 \pi}}^{\int_{(2+2 \sin \theta)^{2}+(2 \cos \theta)^{2}}^{\theta}} d \theta
$$

and using symmetry, we can also express as

$$
\begin{aligned}
& =2\left[\text { arc length in the } 4^{\text {th }} \text { and } 1^{\text {st }} \text { Quadrants }\right] \\
& =2\left[\int_{\theta=\frac{3 \pi}{2}}^{\theta=2 \pi} \sqrt{(2+2 \sin \theta)^{2}+(2 \cos \theta)^{2}} d \theta+\int_{\theta=0}^{\theta=\frac{\pi}{2}} \sqrt{(2+2 \sin \theta)^{2}+(2 \cos \theta)^{2}} d \theta\right] \\
& =2\left[\int_{\theta=-\frac{\pi}{2}}^{\theta=0} \sqrt{(2+2 \sin \theta)^{2}+(2 \cos \theta)^{2}} d \theta+\int_{\theta=0}^{\theta=\frac{\pi}{2}} \sqrt{(2+2 \sin \theta)^{2}+(2 \cos \theta)^{2}} d \theta\right] \\
& =2\left[\int_{\theta=-\frac{\pi}{2}}^{\theta=\frac{\pi}{2}} \sqrt{(2+2 \sin \theta)^{2}+(2 \cos \theta)^{2}} d \theta\right] .
\end{aligned}
$$

Example 7. Express the arc length of the little loop of $r=1+2 \cos \theta$ as an integral with respect to θ.

To trace just the "little loop" of the curve we let θ range from $\frac{2 \pi}{3}$ to $\frac{4 \pi}{3}$.
Next calculate:

$$
\frac{d r}{d \theta}:=\frac{d}{d \theta}(1+2 \cos (\theta))=0+(-1) 2 \sin (\theta)=-2 \sin (\theta)
$$

Now for the Arc Length:
Arc Length $=\int_{\theta=\alpha}^{\theta=\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} \mathrm{~d} \theta$

$$
=\int_{\int_{\theta=\frac{2 \pi}{3}}^{\theta \theta=\frac{4 \pi}{3}} \sqrt{(1+2 \cos (\theta))^{2}+(-2 \sin (\theta))^{2}} \mathrm{~d} \theta}^{.} .
$$

