In this handout: $\sum a_{n}$ is an arbitrary-termed series (i.e. $-\infty<a_{n}<\infty$).

Definitions

$\sum a_{n}$ is absolutely convergent $\Longleftrightarrow\left[\sum\left|a_{n}\right|\right.$ converges $]$
$\sum a_{n}$ is conditionally convergent $\Longleftrightarrow\left[\sum\left|a_{n}\right|\right.$ diverges \quad and $\quad \sum a_{n}$ converges $]$ $\sum a_{n}$ is divergent $\Longleftrightarrow\left[\sum a_{n}\right.$ diverges $]$
Summarizing:

By definition, $\sum a_{n}$ is		$\sum\left\|a_{n}\right\|$		$\sum a_{n}$
absolutely convergent	if and only if			
conditionally convergent	if and only if		and	
divergent	if and only if			

Big Important Theorem: Absolute Convegence \Rightarrow Convergence
If $\sum\left|a_{n}\right|$ converges, then $\sum a_{n}$ converges.
So we get for free:
If $\quad \sum a_{n}$ diverges, then $\sum\left|a_{n}\right|$ diverges.

Combining the Definition and Big Important Theorem we get				
If $\sum a_{n}$ is		$\sum\left\|a_{n}\right\|$		$\sum a_{n}$
absolutely convergent	then		$\stackrel{\text { so get }}{\Longrightarrow}$	
conditionally convergent	then		and	
divergent	then		$\stackrel{\text { so get }}{\rightleftharpoons}$	

So each arbitrary-termed series $\sum a_{n}$ is one, and only one, of the three possibilities:
\square absolutely convergent
\square conditionally convergent
\square divergent

Ratio Test \& Root Test (for an arbitrary-termed series $\sum a_{n}$).

For the Ratio Test, set $\quad \rho:=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$.
For the Root Test, set $\quad \rho:=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} \stackrel{\text { note }}{=} \lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}$.
Then

$0 \leq \rho<1$	\Longrightarrow		$\sum a_{n}$ converges absolutely
$\rho=1$	\Longrightarrow	test is inconclusive	(the test doesn't tell us anything)
$1<\rho \leq \infty$	\Longrightarrow	$\sum a_{n}$ diverges	(by the $\mathrm{n}^{\text {th }}$-term test for divergence).

Alternating Series Test (AST) \& AST Remainder Estimate

Let
(1) $u_{n} \geq 0$ for each $n \in \mathbb{N}$
(2) $\lim _{n \rightarrow \infty} u_{n}=\square$
(3) $u_{n} \square u_{n+1}$ for each $n \in \mathbb{N}$.

Then
-

- and we can estimate (i.e., approximate) the infinite sum $\sum_{n=1}^{\infty}(-1)^{n} u_{n}$ by the finite sum $\sum_{k=1}^{N}(-1)^{k} u_{k}$ and the error (i.e. remainder) satisfies

$$
\left|\sum_{k=1}^{\infty}(-1)^{k} u_{k}-\sum_{k=1}^{N}(-1)^{k} u_{k}\right| \leq \square
$$

- How to Remember the AST Remainder Estimate.

Let $u_{n} \searrow 0$ (i.e. $\left\{u_{n}\right\}_{n=1}^{\infty}$ satisifies conditions (1) - (3) of the AST) and

$$
\begin{equation*}
\sum_{n=1}^{\infty}(1)^{n+1} u_{n}=L \tag{1}
\end{equation*}
$$

Consider the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ of partial sums of the series in (??):

$$
s_{n}=\sum_{k=1}^{n}(1)^{k+1} u_{k}
$$

So

$$
\begin{aligned}
& s_{1}=u_{1} \\
& s_{2}=u_{1}-u_{2} \\
& s_{3}=u_{1}-u_{2}+u_{3} \\
& s_{4}=u_{1}-u_{2}+u_{3}-u_{4} \\
& \quad \vdots
\end{aligned}
$$

and

$$
\lim _{n \rightarrow \infty} s_{n}=L
$$

Then we have the following scenario. (Thomas book page 612.)

FIGURE 10.13 The partial sums of an alternating series that satisfies the hypotheses of Theorem 15 for $N=1$ straddle the limit from the beginning.

